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Abstract

. Under certain conditions, a periodic signal of unknown fundamental frequency can
still be recovered when sampled below the Nyquist rate, or twice the highest frequency
present in the waveform. A new sampling criterion has been proposed which enumerates
such conditions. It has been shown that in theory, if the signal and sampling frequencies
are not integrally related, and the signal is band-limited (to a range the extent of
which is known but otherwise unrestricted), then the signal waveshape can always be
recovered. If the fundamental frequency is known to lie within a range not spanning
any multiple of half the sampling rate, then the temporal scaling for the reconstructed
waveform can be determined uniquely, as well. Procedures have also been proposed for
reducing time-scale ambiguity when the latter condition is not met.

A previously presented time domain algorithm for reconstructing aliased periodic
signals has been implemented and modified. A new algorithm, operating in the fre-
quency domain, has been proposed and implemented. In the new algorithm, the signal
fundamental frequency is first estimated from the discrete Fourier transform of the
aliased data through an iterative procedure. This estimate is then used to sort the
aliased harmonics. The inverse discrete Fourier transform of the resulting spectrum
provides the reconstructed waveform, corresponding to one period of the original sig-
nal. Empirical analysis has indicated that the proposed algorithm is comparable to the
time domain algorithm in terms of reconstruction quality, robustness, and efficiency.
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= :
| Introduction
ot 1.1 Nature of the Problem -
. s
In many instances, knowledge of some special property of an analog signal can be I:::
\' exploited to reduce the sampling rate or the number of samples necessary to retain "S
., ' all the information in the signal. Nyquist sampling of bandlimited signals certainly _\
represents one example. As another exa;.mple, it might be known that the waveform
under observation corresponds to one of only a few candidates, and therefore relatively
m few samples are needed to identify it uniquely. In an extreme case, the signal is known =
completely beforehand to within a scale factor, in which case only one sample is needed. .
In this thesis, we shall first propose a set of sufficient conditions under which a
periodic signal can still be recovered after uniform sampling below the Nyquist rate, "
2 or twice the frequency of the highest harmonic present in the waveform. Next, we will _
. discuss, implement, and modify a time domain algorithm developed by Rader (1] for ~f}_4
G determining the period of such waveforms and reconstructing them from the samples. .
N For brevity, hereafter we will refer to the combination of these two steps as de-altasing, :.
- under the assumption that only periodic signals will be treated. A new frequency
t domain de-aliasing algorithm will then be developed, and it will be compared with the . ,\,
Rader algorithm.
The work summarized in this thesis should have practical significance since periodic
signals abound in both natural and synthetic environments, and it is not always possible _
S e e D T T T e T e S o Ny




RPN A AL AR S SO AR IEE AT ST A AR AR AR AN S aha el e i i N g\ g s M A RFA G A S ML ME S AL s g e e oeg s aser st sl IS S 8

P

- - -

to sample them above the Nyquist rate. While undersampling is typically due to the

- s, -.'t".'fq-ﬁ".
IH[

physical limitations of the available sampler hardware, there are others reasons, as
well. It might be desirable to use hardware configured for a low frequency application
to sample infrequent or unanticipated high frequency or harmonically rich periodic
signals, as may be the case in a satellite in space. Undersampling might be desired for >
purely economic reasons, since high-speed sampling systems are relatively expensive. -
The savings would be even greater if it was necessary to sample several periodic signals '
(whose frequencies need not be related) concurrently, or at least nearly so. A single
commutating sampler could be used if the effects of undersampling could be removed
at a later time. Applications in bandwidth compression of periodic signals are also
possible.

The algorithms to be presented have the benefit of being insensitive! to the band- ;3
width of the original signal, i.e., to the extent of the frequency range containing all
signal harmonics. This is a significant advantage over methods such as those compris-
ing decomposition of wide-band signals into several narrow-band components, sampling ‘4
(at a low rate), and subsequent recombination of the samples to yield a sequence which &
is not aliased. Multiple samplers are required for such methods, and their number is
proportional to the total bandwidth.

It should be emphasized that the goal of this research is to yield solutions in sit-
uations where undersampling is unavoidable, or desirable for reasons similar to those

mentioned above. It is the minimum sampling rate and not the minimum number of

Z

]

<

samples necessary that we wish to reduce. g
sy

1.2 Background

Signal reconstruction from corrupted data has been and remains a popular topic
in discrete-time signal processing. Techniques for removing or reducing noise, rever-
beration, and other such degradations have been implemented successfully in many

instances. However, relatively little work has been published on removing the distor-

1At least in theory, and for the most part, in practice as well.

..........
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tion introduced by undersampling.

Marks 2| has provided a closed-form method for recovering any continuously sam-
pled (i.e., pulse-amplitude modulated) band-limited signal. Nevertheless, the method
cannot be extended to discrete time sampling since it is based on the fact that the
non-zero portions of the sampled waveform essentially comprise an infinite number of
discrete samples. This can be stated formally in terms of function analyticity. Swami-
nathan (3| has used linear system identification techniques for signal restoration from
data aliased in time. Since the method consists of modelling the causal and time-
reversed anti-causal parts of the time-aliased signal as the impulse responses of stable,
causal filters, it too cannot be used for the problem at hand. Powell [4] has enumer-
ated the conditions under which a broad-band sparse spectrum is not destroyed by
undersampling. However, only the particular band about the origin is protected from
aliasing, and therefore the method can;lot be applied to periodic signals, all of whose
harmonics must be recoverable. '

The only previously known practical algorithin for dg-aliasing an undersampled
periodic waveform has been given by Rader [1]. The Rader algorithm exploits the
fact that samples obtained from many periods of a waveform can be sorted into a
single period to dramatically increase temporal resolution, effectively removing aliasing
distortion. While the same approach is used in conventional sampling oscilloscopes,
these devices require operator intervention to adjust the triggering system so that the
displayed periods truly correspond to the original waveform. The operator in effect
must determine’ when the proper signal period is being used to sort the samples,
thereby relieving the oscilloscope of the most difficult task.

In both the Rader algorithm and the new algorithm to be presented in Chapter 4,
the principal issue will be the determination of a signal’s period. In both algorithms,
waveform reconstruction is relatively straightforward once this has been accomplished.
We will discuss the Rader algorithm in detail in Chapter 3, then implement and modify
it. It will also serve as the basis for much of the other work in this thesis, the remainder

of which is original for the most part.

20r else provide a trigger signal whose period is the same as the waveform to be observed.

’
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1.3 Scope, Contribution, and Organization of the

s aaAane

Thesis

o

% 1

In Chapter 2. we will address theoretical issues which arise in sampling periodic e

s .
o
[N

. waveforms. A new de-aliasing procedure and a new sampling criterion, both specificaily

‘ for periodic signals, will be developed. Though stated for non-realizable conditions,® the

o \"J’

new criterion will illustrate the upper bounds on performance which can be expected
from the algorithms described in the chapters that follow.

The next two chapters contain detailed descriptions of algorithms for reconstruction
of undersampled periodic waveforms. Chapter 3 describes the time domain de-aliasing . N
algorithm mentioned briefly in the previous section. All work in Sections 3.1 and 3.2

. is directly attributable to Rader [1,5], though some liberties have been taken in inter-

pretation. Section 3.3 contains a new, simple modification of the relatively complex

[ I 3
v
|2 "Ss

v
P AAAART

Rader algorithm, intended to increase algorithm efficiency when possible. Chapter 4

describes an o'riéinal algorithm for de-aliasing in the frequency domain which, though

z

perhaps not as elegant as the Rader algorithm, will be shown to be comparable in many i -3

.
vor

instances. Typical reconstructions for natural and synthetic signals, along with other
pertinent data, are presented at the conclusion of each of these two chapters. m

The research is summarized in Chapter 5, in which we discuss the relative strengths
and weaknesses of all algorithms and their variants, and perform empirical comparisons,
as well. Issues such as speed, robustness, and reconstruction quality are considered.
Suggestions for future research are enumerated in Chapter 6.

It will be most convenient to introduce new notation as it is needed. Whenever
possible, results from previous works not directly related to de-aliasing will merely be O

stated, and appropriate references will be cited.

5 3A property it shares with perhaps all other criteria, including the Nyquist criterion. : .

>
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& Chapter 2
-
Development of a Sampling Criterion
,o
B for Periodic Signals
The principal concern of this thesis is the recovery of a periodic continuous-time {
signal, of unknown frequenc)_', from a set of uniformly spaced samples obtained using \
i a sampling frequency below the Nyquist rate. This chapter will provide the necessary ,:
) theoretical background, and more importantly, new extensions of conventional theory e
8 better suited for the problem at hand. Implementation issues will be treated in the \
- chapters that follow.
o A sampling criterion will be needed to indicate when a set of samples retain all of
“ the information in a periodic analog signal. We will briefly review the classic Nyquist S
) sampling criterion for lowpass and bandpass signals. The greater portion of the chapter =
= will be devoted to reformulating the Nyquist criterion for the special case of periodic T
waveforms. In the process, a theoretical procedure for de-aliasing such signals will also .
L‘ be developed. Finally, methods for reducing ambiguity problems exposed during the e
development of the new criterion will be discussed. ;::.j-

2.1 The Nyquist Sampling Criterion

‘ .
.
.

Many practical signals are generated by physical processes and as such, can be

regarded as approximately band-limited by neglecting the minute amount of energy at

(4]}
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frequencies above a judiciously chosen cutoff! ,. If such a signal is sampled uniformly,
then there exists a minimum sampling rate for which the original signal can still be

completely recovered.

Enumeration of a sampling criterion which specifies this minimum rate has been
attributed to several authors, including [6]: Nyquist, Shannon, Whittaker, and Ko-
tel’nikov. Because it was first introduced by Nyquist in 1928, in the context of tele-
graph transmission theory, we hereafter will refer to it as the Nyquist sampling crite-
rion. The Nyquist criterion is well documented in the literature of signal processing
and comnunications, as well as that of several other fields. It is repeated here only for

completeness:

Criterion 2.1 If an analog signal z,(t) contains no energy at frequencies {1 outside of
the range (1] < (1, rad/sec, then it is completely determined by its ordinates at a series

of points equally spaced by 7 /Q1, seconds or less.

The Nyquist criterion actually applies to a wider variety of signals than just those
of a lowpass nature. Destructive aliasing will not occur in sampling any analytic?

bandpass signal which contains no energy outside of some range
-, +0.<N<0, + 1.

provided that the sampling rate (2, is greater than or equal to the Nyquist rate 211,.
In addition, a non-analytic signal sampled at Q, will not be aliased® if it contains no

energy outside of the union of the ranges

p+1 P
-—N, < < -2Q,
2 7= a 2
p p+1
-'n’ < Q < —_— s

2 ' - 2

where p is any integer. For each case above, if the respective parameter 1. or p is
known, then the recovery procedure will be well defined. These are perhaps the two

simplest cases to which the Nyquist criterion can be extended.

!The uppercase {1 will be used hereafter to denote continuous-time frequency {in radians/second),
with the lowercase w being reserved for the discrete-time case (radians/sample).

20ne which has no energy at negative frequencies.

3We will use the term aliasing to imply destructive aliasing when clear from context.

........................
.............
.........
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The Nyquist criterion specifies a set of conditions which is sufficient but not nec-
essary to permit reconstruction of a band-limited waveform from uniformly-spaced
samples. Clearly, we can choose other criteria which may be more amenable to other
signal representations, sampling methods, etc. In the next section, it will prove ad-
vantageous to do so, though we still must be sensitive to the basic issues of spectral

overlap and reconstruction ambiguity.

2.2 The Pseudo-Nyquist Sampling Criterion

Many types of waveforms can be recovered from their samples even when they
occupy a frequency band larger than the maximum permitted by the Nyquist criterion.
Signals having sparse spectra form one such class, and include periodic signals and
frequency-modulated narrow-band signals. They typically are non-analytic functions
which do not meet the generalized Nyquist criterion passband requirement specified at
the conclusion of section 2.1. Non-destructive undersampling of modulated- signals is
treated in (4], and will not be discussed further here. In this section, we will determine
a set of conditions for which an undersampled periodic waveform can still be completely
recovered, and outline a hypothetical reconstruction procedure. These conditions will
then be incorporated in a new sampling criterion specifically for periodic signals.

We begin by addressing the issue of spectral overiap due to aliasing. An analog
signal z,(t), periodic for all time, is characterized by a line spectrum X,(;0?). Sampling
the signal over all time at constant intervals T yields a spectrum X(e’®7T) exhibiting
no spectral overlap unless two or more harmonics, each inherently having zero width,
are aliased to the same frequency. Because X(e’%T) is periodic in 1, we need only
determine where all aliased harmonics appear in the baseband 0 < 2 < 27 /T rad/sec
in order to check for overlap.

Using a sampling rate! 1,, the n** harmonic of a waveform with a fundamental
frequency 1, is modulated down to (nf},)qn,, where (z), denotes the quantity z modulo
y. If the ratio 11,/N1, can be expressed as a rational number u/v with u and v in

lowest terms (i.e., their greatest common denominator (u,v) = 1), then each harmonic

-3

I -‘A .l -
- - N
mE A aa's

~

.
-h

T
N
T T
LI
A& R ram_m

"‘l
RPN

PR A AR




L
b
v
N
-
i

is aliased to one of only u (or fewer) distinct frequencies. The new location of the

(n — u)** harmonic is
<(fl + u)”w)ﬂ. = (\nnw - vns;’ﬂ. = ’:nnw;‘ﬂ-
i.e., the same as the n** harmonic.

If there are more than u consecutive analog harmonics, signal recovery is impossible
since at least two harmonics overlap in the aliased spectrum. Therefore, unless a signal
is known to contain fewer than u harmonics, we must require 12,/{1, to be irrational.
If the latter condition is met, all harmonics will be aliased to unique frequencies. The
number of harmonics must be finite, but is otherwise unrestricted and in fact can be
unknown.

In order to determine (1, we first must be able to identify the locations® of the
aliased harmonics. If the number of non-zero harmonics is finite, then their locations
can be detected and stored in a list. If the first harmonic in the analog waveform is
non-zero, its location after aliasing ((Qy)n,) will be included in the list above. We only

need to determine the list entry to which it corresponds.

Suppose the periodic analog signal is band-limited to any known range, (2] < 2,.8
This clearly guarantees a finite number of harmonics. Another requirement is needed:
either the (analog) spectral component at (2, (which we will call “02;”), the component
at -, (“N1-;"), or both must be non-zero. For the common case of real signals, we
must require that both be non-zero. We do not need to know which of the cases above
is true, but at least one of the harmonics at 1; and 1., is necessary in the recovery

procedure to follow in order to determine Q.

The first step of the procedure consists of listing the abscissas, i.e., frequency loca-

tions, of all spectral lines in the region 0 < 2 < ,. Each value is then used as a guess

*In general, subscripts s will denote quantities related to the sampler, and subscripts w will correspond
to the waveform to be reconstructed.

5At least in theory, harmonic amplitudes do not help in determining )y, only in the subsequent
reconstruction process.

8 Note that the choice of (1), is completely arbitrary, viz., independent of both {1, and 2,. Therefore,
cases in which {2, > (1, are acceptable.
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of the aliased fundamental, (Q,)q,. We observe the spectrum at positive and negative
multiples (interpreted modulo (2,) of each guess. The arbitrary but known signal cutoff
1x indicates when to stop this process in each direction along the {l-axis. The number
of multiples for which the spectrum is non-zero is recorded.

The guess yielding the maximum tally must be either (2;)q, or (1_1)q, (the latter
= (—{4)qa,). If both are present, there will be two “best” guesses. Each incorrect
guess, corresponding to an analog frequency Qx or Q1_x (the harmonics at N, and
- N1, respectively, where N > 1), resuits in a lower tally because only one of every
N harmonics which might be non-zero has been counted. The numbers of positive and
negative harmonics in the waveform need not be equal. In addition, missing harmonics
cause no harm unless both “f1;,” and “Q1_;” are absent.

We now must itemize any additional contraints which are mandatory for obtaining
1, unambiguously from the value(s) found above. The maximum unambiguous range
of 1, cannot be greater than or equal to {1,. Consider two signals with the same wave-
shape'(or equivalently, the same Fourier series coefficients) but different fundamental
frequencies {1, and QB = (1, + rfl,, where r is some integer. The n'* harmonic from
each is aliased to the same frequency, rendering the two sampled signals indistinguish-
able.

Unfortunately, the restriction above is insufficient. Whether real or coraplex, a
periodic signal might have energy at both positive and negative multiples of its funda-
mental. Since

(~nflu)a, = (4 - (nu)a.)q,
the —n!* and n** harmonics will be aliased to mirror image locations about Q,/2. In
listing aliased-harmonic abscissas as done above, the same set of entries are obtained
from a signal of frequency {1, and another of frequency g = -4 + rQ,, where r
is any integer, if the same® harmonics are present. If r = 0 and the two signals have
the same harmonic coefficients, one signal is simply the time reversal of the other. We
must know that 0, lies in a particular range pf,/2 to (p + 1)0,/2, for some integer p.

The maximum unambiguous range is thus only 2,/2, and it cannot span any muitiple

8This refers to the harmonic numbers (£1°t, 24 . ) and does not concern the harmonic amplitudes.
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of 2,/2.

If there is only one best guess ();.,, the value of p indicates whether or not to
negate it. If there are two best guesses, the value of p uniquely determines which of the
two to use since {2, can only differ from {Q,)q, by a multiple of 1,. (p indicates the
proper frequency range of width 1,/2.) After negation (if necessary), the appropriate
multiple of {1, is then added, and we proceed to reconstruction. The latter consists
of unravelling the aliased harmonics, and is simple once {1,, and 0, are both known.
Figure 2.1 contains a flowchart summarizing the procedure described above. It is
assumed that 1,/ is irrational, and that Q,, (2,, and p are known.

There exists at least one inefficiency in the de-aliasing procedure described above.
We checked for non-zero harmonics at positive and negative multiples of (Qx)q,, not
I1n. DBecause these multiples were interpreted modulo Q, as well, the exact same
sequence of spectral locations would have been checked if we had known and used (n
and its multiples instead. The only difference concerns just how quicxly the process
would have terminated in each of the positive and negative frequency directions.

Had we used (15, we properly would have stopped searching the aliased spectrum
when nQly > ). However, the termination condition we actually used was n(fly)q, >
1. We effectively checked for analog harmonics above {1,. Since these harmonics
were non-existent, the tallies remained undistorted. If the {1, range parameter p was
known, we could have adjusted each guess (Qy)n, beforehand to lie in the allowable
range. However, the generality gained from not requiring this will be advantageous
later.

Based on the above discussion, we now define a new sampling criterion for periodic

signals which we will call the pseudo-Nyquist sampling criterion:

Criterion 2.2 If an analog signal z,(t) is periodic, contains no energy at frequencies
outside any range Q| < (1, rad/sec, and its fundamental frequency Q,, lies in the range
pQ,/2 to (p ~ 1)Q,/2 where p is an integer and the quantity Q,/Q,, is srrational, then
it 13 completely determined by sts ordinates at series of points spaced apart by 27/Q1,

seconds.

We would be able to relax one limitation imposed by the pseudo-Nyquist criterion
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if it were not for the fact that the number of harmonics is unknown. Since only a
finite number of narmonics can be present, {2,, {1, need not be irrational. Recall that
if Q,/{ly can be expressed as a rational number u/v where (u,v) = 1, then up to u

consecutive harmonics can still be present in the signal without resulting in destructive

{::: aliasing. The probability of this happening with u simultaneously being prohibitively
- small is very low.

‘ Finally, consider the effects of p being unknown. In this case, we could temporarily
b assume p = 0. Determination of 2, and signal recovery would proceed in ezactly the
x same manner as before. The only difference(s) between the reconstructed and true
waveforms would be a constant scale change along the time axis and/or a reversal of
. time. There are probably applications where this is tolerable. If if is not, there are still
-‘ means for effectively removing these two ambiguities, as described in the next section.

2.3 Reducing Signal Fundamental Frequency Am-
biguity

Two ambiguities arise when the range of permissible values for the signal funda-
mental frequency {1, is unknown. (We will assume this is true for the remainder of
the chapter.) Given only the sampling frequency (2, and setting p = 0, the procedure
from the previous section yields a unique value in the range 0 to 1,/2 corresponding
to either (fly)a, or (~Qy)q,. We cannot determine which of the two it is, and even
if we could, we would not know what multiple of 2, to add to that value (negated if

necessary) in order to obtain .

Two possible solutions to the first problem are:

1. Only allow periodic waveforms which are analytic.
2. Filter non-analytic signals with a Hilbert transformer, before sampling, to remove
all energy at negative frequencies.

Either one insures that the ambiguous value found is identically (1, )q, since the ana-

log harmonic at -, has zero amplitude. If a signal is not analytic and waveform
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reconstruction is required (in addition to a value for (1,), then both the filtered and
original signals must be sampled. Samples of the former are needed for determining
1., and those of the latter for signai recovery.

The Chinese remainder theorem from number theory provides a convenient solution
to the second ambiguity problem mentioned previously. Before describing this we first
present some necessary notation from number theory. (z)p denotes the residue of z
modulo the modulus M. This residue is defined as the remainder of z divided by M.
Since all integers z - kM (for arbitrary k) are congruent, i.e., they yield the same
residue modulo M, they are said to form a residue class modulo M. There are M
residue classes. Using this notation, the Chinese remainder theorem can be stated as

follows:

Theorem 2.1 The congruences (z)m, = ri possess a unique sc;lution among the residue
classes modulo M = [[m; if the moduli m; are mutually prime sn pairs. The solution
for z is the residue class R = 3 r,N;:M; where each M; = M/m,, and each N, is the
solution of an equation (NiM;)m. = 1.

In the above theorem, all variables are integers. Proofs of the theorem can be found in
most texts on number theory [7,8,9,10].

Using the Chinese remainder theorem, several highly ambiguous residues r, of an
unknown quantity r can be combined into a single, much less ambiguous residue R,
provided that the moduli m; are pairwise coprime. The uncertainty range of each of
the residues r; is the corresponding modulus m;, while the uncertainty range of R is
[Tm.

Application of the Chinese remainder theorem is not restricted to problems involv-
ing only integers, however. It can be utilized for rational operands, as well. Since
all practical situations involve finite precision arithmetic, all quantities are rational, re-
gardless of the units used. Given the units and the size of a quantum, we first normalize
the dimension of interest in terms of a unit quantum. Integral,® mutually prime moduli

are then chosen, and integral residues are found. The single unambiguous (or at least

? After normalization.
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_ less ambiguous) residue determined using the Chinese remainder is then de-normalized

to yield the desired quantity.

Suppose that after normalizing time in the manner above, we sample an analytic
periodic signal at several integral, mutually prime sampling rates, simultaneously. The
procedure in Section 2.2 can be used to produce a residue (viz., the frequency of the
aliased fundamental harmonic) from each of the resulting sequences. If the residues
from this ideal procedure are quantized, a unique value of the true fundamental fre-
quency modulo the product of the sampling rates can be obtained. By using either
higher sampling rates or, more appropriately from our standpoint, additional sampling
systems, the ambiguity problem can be virtually eliminated.

Consider the following simple example. The clock rates of four samplers are 7, 8,
9, and 11 samples per second, respectively. All measurements are to be quantized in
Hertz. Using the output from each of the four samplers in the ~rocedure from the
previous section, we obtain va.lues_for the aliased fundamental frequency of 2, 5, 5? and
6 Hz, respectively. To éet the true value of the fundamental frequency f., we utilize the
Chinese remainder theorem: z is f,; the sampling rates are my = 7, m, = 8, my = 9,

and m, = 11; and the residues argr, =2,r5=5,r3 =5, and r, = 6. Therefore,

M = 7.8.9.11 = 5544
M, = 8.9:11 = 792
M, = T7.-9.11 = 693
My = 7.8.11 = 616
M, = 7.-8.9 = 504

Continued fractions 10| can be used to solve

(T92Ny)7 = 1
(693N3)s = 1
(616N3)g = 1
(504N = 1

yielding Ny =1, N, =5, N3 =7, and N, = 5. Finally,

R =ri(792- 1) + ry(693 - 5) + ry(616 - T) + ry(504 - 5)
15
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The values N; can be pre-computed and reused for any set of measurements r,. ':
Entering the present values of r, into the formula above yields R = 149. This is the __
residue class modulo 5544 Hz to which the fundamental frequency belongs. Equiva- E
lently, f, = 149 + 5544 Hz, for some unknown integer j. If f, is known to lie in some o
range whose width is less than or equal to 5544 Hz, then it can be uniquely determined o
from the four aliased sequences above. If a greater unambiguous range is desired, one -
or more additional samplers with appropriate clock rates will be required.

The usefuiness of the Chinese remainder theorem is readily apparent from the ex-
ample above. For any one sampler used alone, the maximum unambiguous range of -
fw would have been the sampling rate, less than 12 Hz. But because the four clock
rates are pairwise mutually prime, the maximum unambiguous range was extended to
greater than 5 kHz. a

3
3
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Chapter 3

A

;:‘5" Rader Time Domain Sample Sorting

o
)
.

. Algorithm

; In the previous chapter, we specified a set of conditions under which a periodic signal
can be compietely recovered from its samples, even after undersampling. However, these
i . conditions éannot be met, and therefore much of the remainder of this thesis will be
devoted to the practical aspects of the recovery problem.
In this chapter we will review the theory and discuss our implementation of an
[ efficient time domain de-aliasing algorithm developed by Rader [1]. An iterative tech-
N nique is used for determination of the signal period T, and constitutes the bulk of
the processing required. Subsequent waveshape recovery consists of time series sorting,
- and is straightforward once T, is known. Results from number theory are exploited to
- make the approach practical.
Section 3.1 will describe the general approach of the Rader algorithm. It will include
i the development of a criterion proposed by Rader for indicating the best reconstructed
signal among several trial reconstructions, simuitaneously providing an estimate of
T.. The second section will discuss the algorithm in detail, and will include flowcharts
i summarizing o:1r implementation of it. Unless noted otherwise, all work to be described

. in Sections 3.1 and 3.2 is due to Rader [1,5], though some liberties will be taken in
interpretation. In a few instances, it will be beneficial to supplement the discussions

provided by Rader.
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Section 3.3 will discuss a new modification of the Rader algorithm in which the
iterative procedure for estimating T, is accelerated by decomposing it into a series of
successively finer searches, with a coarse search being used on the first iteration. Typical
reconstructions for undersampled natural and synthetic signals will bc_e presented in the
closing section, along with other pertinent data.

It will be convenient to normalize time using the sampling period T,. We will refer
to the ratio T, /T, as 7,, the normalized waveform period (or simply the waveform
period, when clear from context). More generally, r (= t/T,) will be used as a dimen-
sionless independent variable for continuous time. Likewise, we will define a normalized

frequency variable! ¢ = 1/Q,, where 1, = 2x/T,.

In both this chapter and the following one, we shall assume that T, is known, and
that T, is not. Since all processing involves time-normalized data, the same algorithms
can be used when the reverse is true. The degree of accuracy to which T, is known will
not be critical in any of the algorithms presented in this thesis, since the value is only
needed for computing the output sample spacing. For now, we will also assume that
both T, and T, are stable. The repercussions of unstable periods will be discussed in

Chapter 5.

3.1 General Approach

If both the signal and sampling periods are known, waveform recovery is simple.
Each sample z{n|, corresponding to the analog signal z,(t) at t = nT,, is equal to the

sample that would have been obtained at time t = (nT,)r_. To recover the original

waveshape, we can place each sample in a composite period at t = (nT,)r_, or equiva-
lently, r = (n),,. The composite period thus extends over the range 0 < r < r,. We
have chosen to view its formation as wrapping the samples onto a cylinder of circum-
ference 7, as depicted in Figure 3.1.

The sample spacing within a composite period typically is not uniform. In general,

!We use ¢, measured in revolutions, to distinguish it from f, 1 and w, typically corresponding to
quantities measured in Hertz, radians/second, and radians, respectively.
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Figure 3.1: Formation of a composite period.
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successive samples zini are scattered to non-integral locations along the r-axis. Never-
theless, the waveshape of the original signal z,(t) should be apparent, even for modest
quantities of samples and for arbitrarily large T,.

We know from Chapter 2 that the procedure above generally will fail if 7,, is rational.
In fact, the irrationality requirement in the pseudo-Nyquist criterion can be justified
with a time domain argument similar to the frequency domain argument presented
earlier. If r, (= Q,/0, from Chapter 2) can be expressed as a rational number u/v
where (u,v) = 1, then each sample has one of only u (or fewer®) distinct ordinates.
Since

(n+u)r, = (n+v1y),, = (n),,

the (n + u)** sample is identical to the n** sample.

However, we also know from Chapter 2 that if r, can be expressed as a fraction
u/v as above, destructive aliasing still will not occur if all harmonics in the original
waveform spectrum occupy u or fewer spectrally adjacent harmonic locations. If this is
the case, the signal can be completely recovered by taking only the first « (i.e., a unique
subset) of N available samples (assuming N > u), forming a composite period, and
interpolating as desired. The interpolation method must be insensitive to non-uniform
sample spacing.

The sample sorting algorithm above is insufficient for the more common case where
the signal period is not known. However, suppose that we repeat the reconstruction
process for several guessed or trial periods 7,;, one of which is the correct period, 7.
Assuming enough samples are used, it is not unreasonable to expect the composite
period formed with the true period to be “smoother” than the others so formed.

In order to implement such an iterative technique, we need a method for estimating
the “smoothness” of a composite period. For this purpose, Rader has defined the vari-
ation of a composite period as the sum of the absolute values of the differences between

successive composite period samples z, n|, including the last and first samples.> The

2In the case where the ordinates of one period of the analog waveform are not unique.

.......




F‘- A AR A o G e g ar 4 aA el o ane vt

.

A

R

|

e
g "y

1

vy

P ".

I

A‘ »" - N . B . s . - . . . .
k ~~~~~ set e e A R R T T L TR VU
A_.A_.A..A_J.-.A‘AAJ-.A'.A‘_;:‘A.JL; _-u,._‘.n‘ PP USSP SR WY N

subscript 7, indicates the trial period used to form the composite period.
V(rg) = I,,;O} - I'at - i Z .'L',“ﬂ.l - "'vi - 11] (31)

L is the number of samples available, and for now, also the number in the composite
period. The indices of the z. /n| only indicate temporal ordering. They do not imply

uniform sample spacing.

If we were to reconstruct an aliased sinewave with amplitude 4 using its true pe-
riod 7, and many samples (so that the composite period contained samples near the
maximum and the minimum of the sinewave period), V(r,)|,, would be very nearly,
if not exactly, 44. The sinewave samples would be in the wrong temporal order if an
incorrect period was used. This would yield a larger value of V(r,)|,,, unless 1/7, and
e;ther 1/7, or —1/7, were congruent modulo one {“1/7,”, where 7, is the normalized
sampling frequency), in which case V(r,)|,, would be the same. (Refer to Section 2.2.)
We would expect similar results for many other types of waveforms, including those
rich in high frequency components.

Based on the assumptions above, Rader has proposed the following criterion for
choosing the “best” value of 7, from a properly chosen, finite set used in the prescribed

manner:

Criterion 3.1 The trial period which yselds the waveform of smallest variation s the

correct period, and the resulting waveform s the correct waveform.

We will refer to this as the minimum variation criterion. The choice of a suitable set
of trial periods will be treated in Section 3.2.

It is probably impossible to justify the criterion deterministically. This might be
made possible by redefining variation using squares rather than absolute values of
successive differences. Since the criterion has yet to be proven using either definition,
the original one should be retained for a purely practical reason. Most of the processing

required by the algorithm described in the next section involves computation of many

3The bracket notation used for the time variable n is somewhat misleading since, in the most general
sense, I, is a function of a continuous variable (r). However, it will be accurately described as a discrete
time function when implemented.
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trial variations. Therefore, using squares (viz.. multiplies) instead of absolute vaiues
3 would incur a substantial penalty.
The minimum variation criterion can be supported, however, with a probabilistic -

argument. Although the manner in whicil we state the argument here is different from

',.-_ that used by Rader, the key issues remain unchanged. We will consider the effect of :-\ ;
using a given trial period r, with increasing IV, the quantities of samples used. Two -
cases will be examined: r, = 7, and 7, # 7. In either case, as more samples are used,
the variation may increase, and it cannot decrease. However, the effects in the limit
(as N — oo) are distinct in each case.

- Suppose that we form several composite periods using the correct period 7, (which

‘ must be irrational) with different N. As N increases, the variation* Vy(7,) asymptot-

ically approaches V,, the “variation” of one period of the original analog signal:
-

lim Yn(ro) = Vs (3.2)

N—oo

o L
)
ACRE A R

s

In the limit, there would be no inflections (local maxima or minima) of the original
- waveshape between any two successive samples in the reconstructed period. An example
involving four different values of N is shown in Figure 3.2. Note that each of the .
N variations for the last three plots is approximately equal to 16 (i.e., V,).

Now suppose that an incorrect period 7, (# 7,) is used. Increasing N should
always result in a larger variation. V(r,) almost certainly will increase without bound
since, in the limit, each ordinate of the original waveform will be next to every other, '.:-"
after formation of the composite period. It thus seems reasonable that the minimum -
variation criterion will hold for finite N when N is somewhat greater than the number
of significant harmonics present in the waveform, since the latter governs the number
of inflections in a true period of the original waveform. Empirical evidence (viz., plots
of actual variation functions for various N) will be presented in Section 3.4, along with
all other experimental results pertaining to this chapter. -

We can now discuss the algorithm provided by Rader to implement the preceding [ |

procedures for determining 7, and recovering the original waveform z,(t). -

- 4 As defined using absolute, not squared, differences.
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Figure 3.2: Composite periods formed using correct trial period (r, = 7o) and various
:‘.:: quantities of samples. Numbers on (a) and (b) correspond to indices n of original
aliased sequence z{n|.
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3.2 Detailed Description of the Algorithm

Once we have V(7,), the composite period variation for all 7,, we should be able to
determine the true signal period 7, (and thus recover the original waveform) using the
minimum variation criterion presented in the preceding section. However, two problems
must be circumvented in computing V(7,): it is a function of a continuous variable 7,,
and it has infinite extent in this dimension. We are limited to finite search ranges for
74, and only those composed of discrete points.

In developing the pseudo-Nyquist criterion we showed that sampling two signals
having identical Fourier coefficients yields identical sequences z,(n| and z;|n| if the
signal fundamental frequencies differ by a multiple of the sampling rate. We also
showed that if the sum of their fundamental frequencies is a multiple of the sampling
rate, one sequence is the time reversal of the other. (The consequences of ignoring
phase are minimal here.) Therefore, the limits on the search range, 7., and 7,,,;, must
be chosen such that their reciprocals do not span a multiple of 1/2. This includes the
requirement that

1 1
1 < = (3.3)

Tmin Tmaz 2

No additional restrictions need to be imposed in order to insure finite search ranges.

We now direct our attention to the need for a discrete set of trial periods. Fortu-
nately, the function V(r,) is always piecewise-constant. To show this, Rader first defined
a ertical period 7., as a value of 7, for which two or more samples (z,, (), z,(72),...) in
the corresponding composite period z.,(7) would have the same abscissa (1, = 7, = -+ ),
as shown in Figure 3.3. Referring back to Figure 3.1, we see that in continuously vary-
ing 7, (which replaces r, as the circumference of the cylinder), the location of the n*
sample z, ((n),,) also varies continuously. Note that V(r,) cannot change unless two
or more samples interchange. It is ambiguous at each critical period, and constant
between any two which are adjacent.

A hypothetical variation function is shown in Figure 3.4. The limits of the search
range, Tmyn and 7m,:, and the (unknown) true signal period r,, are labelled. All other

markers correspond to locations of critical periods.
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Figure 3.3: Ambiguity of variation for composite period formed using a critical period
(19 = 7op).
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Figure 3.4: Hypothetical variation function showing ambiguity at critical periods {un-
labelled markers).

We only need to compute V(r,) at one point between each pair of adjacent critical
periods. Any such value of 7, can be used, though we will see that certain choices
yield faster execution than others. According t&® the minfmum variation criterion, the
range of 7, over which the variation is smallest should contain the true period r,. If
we retain the value of 7, in this region at which V(r,) was computed as our estimate
of 1y, the corresponding composite period can be used as the reconstructed waveform.
We will call this estimate ),.. The samples in the composite period formed using 7y,
will presumably have the same temporal ordering they would have had using the exact
value of 7, instead. Since 7., cannot be a critical period, all samples will have unique
abscissas.

Rader has shown that the critical periods 7., can be found by solving congruences
relating the abscissas , and r; of any two composite period samples z, () and z,, (1)
which would coincide (r; = ;). If these two samples are the m** and p** samples from

the unsorted sequence z(n|, then

(P)n, = <m>rc, (3.4)
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. Since we are only sorting a finite set of samples z{n| where n = 0,...,.V ~ 1, and the
‘ roles of the two samples are interchangeable, we can assume
0<(p—-m)< N (3.3)
J.:.
o~
Defining the difference p — m as j, we note that
o
o <j>7cp = 0 (3°6)
or, equivalently
J = kg (3.7)
where k is a positive integer which cannot be greater than L, the maximum number of
Eu periods between the m'* and p** samples:
k<L (3.8)
~ where
N-1
L= [ j (3.9)
Tmin

The delimiters || indicate the integer part or “foor” function.

In summary, a critical period 7., can be expressed as a ratio

J
=7 3.10
T‘P k ( )
where
0<jJj<N (3.11)
and
0<k<L (3.12)

Given a search range [r,,.,-,,, Tmaz] Which satisfies the constraints enumerated in
the pseudo-Nyquist criterion, we can list all possible critical periods satisfying Equa-
tions 3.11 and 3.12. However, if T is small and/or NV is large, the number of critical
periods may be enormous. Sorting them (to determine which ones form adjacent pairs)
would be an arduous task, and storage requirements could be prohibitive. An algorithm

for generating successive critical periods is desirable.
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Figure 3.5: Generation of a Farey series of order L = 4, 7, = {9 N N §,}

Solid dots indicate Farey fractions (y,/z,) which are also critical periods for N = 3.

Rader has indicated that the critical periods 7., form a sparse subset of a Farey
series [7,8,9]. A Farey series of order L is defined as the sequence of all rational numbers
u/v (where (u,v) = 1) whose denominators do not exceed L, arranged in increasing
numerical order. For our purposes, the Farey fraction order is given by Equation 3.9.
If the numerator of a Farey fraction is less than N (Equation 3.11), then it is also a

critical period.

A graphical interpretation of the generation of a Farey series of order L = 4 is
given in Figure 3.5. Posts are placed on a grid (perpendicular to it) at all integral
locations in the first quadrant whose z-coordinates are less than or equal to L. An ... ]
observer is placed at the origin of the grid, and is instructed to sweep his line of sight ) q

counterclockwise and name only the coordinates (z,y) of each post he can see. Each

succeeding pair (z,y) forms the next member y/z of the Farey series. This series is SRR
indicated by the collective dots in Figure 3.5. Farey fractions which are also critical . 1
periods (for N = 3) are marked with solid dots. '_‘- :
Of course, a graphical method is not suitable for our purposes. However, given two ;

-
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successive Farey fractions a/b and c/d of order L, it is possible to generate the next

one, ¢/ f. Specifically, let
Z= lf—‘—bj (3.13)

The next Farey fraction is then given by

e = Zc—a

f = 2d-b

(3.14)

The proof is as follows. From 7| we know that two successive Farey fractions a/b

and c/d of order L satisfy both
cb—ad =1 (3.15)

and
b+d>1L (3.16)

If e/ f follows ¢/d in the Farey sequence, then ed — ¢f must equal 1. Anye=2Zc~- a
and f = Zd - b satisfies this equality. We therefore must find a value of Z satifying
both '

Zd-b6<L (3.17)
and
d+(Zd~-b)>L (3.18)
Equivalently
zs-L—:—é<Z+1 (3.19)

The unique solution is given by Equation 3.13.

Given two successive Farey fractions u,/v, and u;/v, spanning 7m.., we can use
Equations 3.13 and 3.14 to generate all the rest. We store the first Farey fraction
uo/V,, then alternate between searching for the next critical period and computing
V(7,) for some 7, between that critical period and the previous one. If a new V(7,) is
less than the previously stored minimum, it replaces that value, and the corresponding
7, is also recorded.

We can use u,/v, for 7, in the initial iteration if it is not a critical period. The last

variation is computed when a critical period greater than 7,,,. is generated. Critical
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» periods are found by testing each new Farey fraction for a numerator less than .V. Any
Farey fractions between the previous and current critical periods (7epprev and Tepcur)
are stored separately for use in computing the variation.

Recall that any value between ., prer and Tp cyr can be used as a trial period 7,. We

could calculate V(r,) by storing the pairs ((n).,, zin|) forn =0,...,.N -1, sorting them T

PP AP

by abscissas (n),,, then using the resulting composite period z,, mi in Equation 3.1. :

All samples z. [m| would have distinct ordinates. For the trial period between the

same two critical periods that surround the true period 7,, the samples would be in

y the correct order, as well. o
However, if we choose a rational value u/v ((u,v) = 1) for 7, which also is not a
critical period, it is possible to avoid storing and sorting the location/value pairs before
calculating each V(r,). In addition, the compesite period samples will have integral
locations. We can calculate V(7;) by determining which samples succeed one another
in the crmposite period and alternately accumulating successive absolute differences.

The samples z{n| are to be sorted on (n),,, or equivalently, (vn)u, since temporal

&

. ..
LN PRON |

ordering is independent of time scale. There will thus be u samples in the composite

. period. Since u/v cannot be a critical period, ¢ > N, and there will be u — N missing

e
).y

- samples in the composite period. If we were to use the original method of storing and =
v -~
h sorting, we would provide u empty registers, then fill them with the N samples z{n|. n

. S
t The u — N registers which would remain empty would be skipped in computing V(7,)

with Equation 3.1.

It is desirable to avoid providing the u registers for accumulating the absolute
differences of successive composite period samples. We only need to determine which
sample z{m| would have been placed in register r + 1, given that sample z{p| would

have been placed in register ». We know that =
(vp)y = (T)u

and s
: .

(vm), = (r + 1),
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; Therefore,
(wp~ 1)y = (vmy,
5 (o(m =) = 1
i and
RS (m)y = (p+ 5)u (3.20)
H_ where s is the multiplicative inverse of v for the modulus u, i.e., any solution of
- (uS)y = 1 (3.21)
The complete set of solutions s is a residue class® of the modulus u, though the unique
value less than u will be used. A method for solving Equation 3.21 will be presented
- near the end of this section.
& To compute V(r,), we store the first input sample, z{0], then alternate between de-
termining the next composite period sample with Equation 3.20, and accumulating the
difference between it and the last sample stored. Whenever the index of the next sam-
- plé is greater than thé number available, a sample will be missing from the composite
period. We simply skip this sample by determining the next sample and retaining the
- previously stored sample, since missing samples should not contribute to the variation.
[ ] Computation of V(r,) terminates when the next input sample is z{0], i.e., the starting
‘ sample. We then will have alternated as above u times and accumulated N absolute lj::::.
differences. ‘:.J
Each composite period formed using 7, = u/v will contain u uniformly-spaced -4
‘ samples. As mentioned earlier, ¥ — N samples will be missing. We therefore should :L_f".w
choose 7, whose numerators are as small as possible (= N, ideally). Recall that in :
- searching for critical periods, we might find Farey fractions y/z between them. Since
o these values are all in lowest terms (i.e., (z,y) = 1), any of them is convenient for use as
S a trial period. Therefore, if more than one are found between a pair of critical periods,
E we should choose the one with the smallest numerator y. Doing so has the additional
benefit of accelerating the variation computation without affecting the value obtained.
s $See section 2.3.
3
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If no Farey fractions (of the order given by Equation 3.9) exist between two particu-
lar critical periods a/b and ¢/d, we must find some other rational number u/v between

them for r,. The mediant |7| of a/b and ¢/d, u/v, provides a convenient solution:

u=a +~ C

(3.22)
v =0+ d
Clearly,

< <

SR
RN

ala

In addition, u/v is sure to be in lowest terms. To prove this, suppose that u and v have

a common factor g. Then

a + ¢ = ge

b + d gf

where ¢ and f are some integers. Now
c = ge —a
b=gf - d

and
cb = g*ef —g(af + ed) + ad

Utilizing Equation 3.15, we note that
g’ef —glaf +ed) =1

i.e., g is an integer factor of one. Therefore, g must equal one, and (u,v) = 1.

Once we find 7.e = u/v, a value of 7, for which V(r,) is smallest, we can reconstruct
the analog waveform by storing the samples z{r| in the same order that they were
used in computing V(r..). In particular, the multiplicative inverse of v, modulo u
(Equation 3.21) is the increment s for the index n. As before, each successive index
must be interpreted modulo u. Missing samples, indicated by n > N, must be blanked.
Since there are u samples in the reconstructed period and the true period T, is very
nearly 7y, T, (in units of real time), the sample spacing is 7y, T,/u, or T,/ v.

The remainder of this section will contain descriptions of procedures presented by

Rader for computing a multiplicative inverse and initializing the Farey sequence used
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to generate trial periods. Finally, flowcharts summarizing our implementation of the
entire algorithm will be provided.
To soive Equation 3.21 for s, the multiplicative inverse of v, modulo u (assuming
(u,v) = 1), we begin by expressing u/v as a continued fraction [7,10[:
;Z:: u 1
= =@~ (3.23)
v 1
E a; + 1
- az +
az—
. 1
-~ a“
The integers a; are determined by the following equations:
u To
- - = a + - 0 < rp < v
v v
"
v T
- = a + = 0 < rp < rg
To To
r r
2 = a; + 2 0 < r: < r
_ m 1 (3.24)
' n r3
—_— = a3 + — 0 < rs < 12
r2 T2
¥ :
Tu-2
= a
s Tu=1 g
The continued fraction expansion of any rational number u/v has to terminate (i.e.,
s r, = 0) since each remainder r; must be a non-negative integer smaller than its prede-
- cessor, r;_;.
i
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The expressions

Do a0
90 1

P

)1 ay
P2 1
92

SR PR,

hY

(3.25)

NS
2
+
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i
&
+
—
]
<

:_ Iu ay +
N as +
! as+
. 1

. .
:'., +__
ayu

where (p;,q;) = 1 fori = 0,...,u, are called convergents to the continued fraction in
Equation 3.23. It can be shown [7] that the even convergents ps;/qz are all < u/v and
increase strictly with i, and the odd convergents ps;.1/g2i+1 are all > u/v and decrease

strictly with 1. Therefore, increasing values of ¢ yield successively better approximations

. of u/v. The last convergent p,/q, is identically u/v.
- For n > 2, the convergents can be generated iteratively [7,10] using
F Pn = GpPn-1 + Pn-2 (3.26)
) Gn = Gndn-1 + qn-2
) In addition,
dnPn-1 — Pndn-1 = ("1)" (3.27)
Equations 3.26 and 3.27 can also be used for n = 1 if we define
p-1 _ 1
—_ == 3.28
a0 (3.28)

We can now specify a procedure for solving Equation 3.21. Store the first two
convergents: p_; = 1, ¢, =0, po = ao (= [u/v]), and g = 1. Use Equation 3.24 to
compute the integers a, until a remainder r, is zero. Also, as each a, is calculated,

compute the next pair (pn, ga) using Equation 3.26. If the zero remainder is found when




" I AR bl

n = u, then p, = u and g, = v. Using these values in Equation 3.27 and interpreting

both sides modulo u, we see that
(WPu-1)u = ((=1)*)u (3.29)
If 4 is even, then p,_; is the solution to Equation 3.21:
8 = Pyu-1 (3.30)

If it is odd, then multiply both sides of Equation 3.29 by —1, and again interpret the

results modulo u. This yields the solution
S=U—pu1 (3.31)

Several of the results presented above for determining a multiplicative inverse can
also be used for initializing the Farey fraction generator needed to produce trial periods.
We desire two consecutive Farey fractions of order L (Equation 3.9) spanning 7m.n, the

lower limit of the signal period search range:

u u ’
2 < tmin < = v, v2 < L (3.32)
L4 V2 ;

We begin by noting the similarity between Equation 3.27 and Equation 3.15. Succes-
sive convergents pn—,/qa—1 and p./gn generated using Equation 3.26 are also adjacent®

Farey fractions of some order L, where L satisfies Equations 3.12 and 3.16, i.e.,

n-1 < L
In-r = (3.33)
gn <L
and
Qn-l + qn > L (3.34)

Equation 3.26 indicates that both the numerators and denominators of successive
convergents increase with increasing n, though not necessarily by constant increments.

Therefore, we can generate convergents to the continued fraction expansion of 7Tmn,

SWe use the term adjacent rather than consecutive since the two Farey fractions are in either ascending
or descending order, depending on whether n is odd or even, respectively.
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starting with a denominator of zero (¢_,), until a denominator g, > L is found. Rader o
has shown that the last two convergents pa-i1 g¢a-1 and pa,g¢, found in this manner

provide the two desired Farey fractions, either directly or with a few additional. minor

B3

steps.

The only difficulty we may encounter is that a remainder of zero (see Equation 3.24) f-'.'
might be obtained before the termination condition above is met. If r,,, is irrational, -
this problem cannot occur. Unlike that of a rational number u /v, the continued fraction -
expansion of an irrational number is infinite. The integers a, in Equation 3.23 (in which
we replace u/v with 7m,s) are unique, and are computed using the greatest integer

function:
a = l_ ‘rm(!ul

IR
LI

a = lr.....-coJ (335)

—_—

-ay
"man %0

In practice, rational numbers with many non-trivial digits must be used for 7mi,. If 2 ‘
zero remainder is obtained before a value g, > L is found, wé must adjust Tm,, by some
arbitrarily small amount ¢, and restart.

If the last convergent ¢, equals L, then by Equations 3.33 and 3.34, pn-;/gqn-1 and
Pn/qn are the desired Farey fractions. If ¢, > L, then p,/g¢, cannot be a Farey fraction

of order L. However, it will be shown that p,_;/gn-) is still one of the two we seek,

and that the other (p'/q’) is given by -

a = lﬂ’l‘—’J (3.36)

and

= a@'Pn-1 + Pa-
P’ Pn-1 Pn-2 (3.37)
qg = a’qn—l + dn-2

The denominator ¢’ must be < L since

L =~ qn-2
dn-1

a' <

.......................................
............




We know that the denominator of pa_;/qn-1 is < L. (If this was not the case, convergent

generation would have had to terminate earlier.) Since

dn-1Pn-2 — Pn-1qn-2 = ('1)"‘1

N3

ot ) .

s we can easily verify that

o ¢'Pr-1 = P'a-1 = (=1)"

4 which meets the requirement imposed by Equation 3.15.

o Finally, we see from Equations 3.36 and 3.37 that Equation 3.16 is also satisfied
since
: L - gn-

’ g + qn-1 = gn-1(1 + l_Q_n__zj) + gn-2

gn-1

& and 1 + |r] > r for any .

’ Figures 3.6 through 3.11 contain flowcharts summarizing our implementation of the
';:", procedures reviewed in this section. They comprise a main program (RADER) and

five subroutines, four of which are called directly from the main program. Subroutine

calls are indicated by boxes with two additional vertical lines.

3.3 A Modification of the Algorithm

The success of the Rader algorithm in recovering a given aliased signal depends
largely on N, the number of samples used. This can be inferred from the probabilistic
arguments supporting the minimum variation criterion which were given in Section 3.1.
N indirectly determines the density of the search for 7, along the r-axis. The density
increases directly (though non-uniformly) with increasing Farey fraction order L. Since
the search range lower limit 7m, for a given signal must be known beforehand, L is
determined by (and approximately proportional to) N, as evident from Equation 3.9.

If too few samples are used, then the algorithm will fail. Specifically, for a given 7p,n,
there is an (approximate) minimum number of samples M yielding a search density
insuring that the estimated period 7., and the true period r, both lie between the
same two critical periods in the corresponding Farey series. However, M is impossible

to quantify, and we must proceed under the assumption that enough samples will be
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Figure 3.6: Program RADER.
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Figure 3.6: continued
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Figure 3.7: Subroutine PS-NYQ-CRIT.
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Figure 3.8: continued
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Counter:
n=0

!

Store Previous
Sample:

X prev = X(0]

...........

Accumulate Store Previous
Variation: —> Sample:
V=V+prm-x[n]l X prev =x[n]‘
Missing
Sample (n >= no. - —
available)
2 .

Interpret Index
modulo u:
n= (n)

—

f

Calculate Index of

Next Input Sample

for Comp. Period:
n=n+s

L

.................

All Samples

Accumulated

(n=0)
t)

variation (V(Ty)),
multiplicative inverse
of v, modulo u (s)

Figure 3.9: Subroutine VARIATION.
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integer (v),
modulus (u)

Subroutine
MULT-INVERSE

!

Set Convergent
Counter: '
n=20

!

Compute First
Term in Continued

ay = Lu/vl

Fraction Exp. of u/v:

!

Store Remainder,
Divisor:
r=1u-23,v,d=v

I

Compute - 1h
Convergent:
Pp1=l Qg1 = 0

!

Compute o®
Convergent:

pnaan,qnz 1

Notes:

Shift Convergents:
Po.2=Py.y? qu-2_=qn-1

n—1=pn ’ -l—qn

l

Store Reciprocal
of Remainder Ratio:
r'd = dir

!

No. of Convergents
(n odd)
t)

Compute Next
Term in Continued
Fraction Exp. of w/v:

a, =;r/ dJ

Adjust Value to
be Returned:

P =U- Py

n-1

Store Remainder:
‘T =r-3a,d

y

Compute Next
Convergent:

Po =3P +Ps2

Qp =3,dy.1 +9n-2

!

Increment
Convergent Counter:
n=n+l

—

A 4

Store Multiplicative
Inverse:

§ = pn-l

!

oo D
L

multplicative
inverse
(s: (vs), =1)

t Equals number of terms in continued fraction expansion of w/v.
$ Never true on first iteration (greatest common denominator (u, v) cannot = 1).
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Figure 3.10: Subroutine MULT-INVERSE.
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Store Missing
Subroutine —> Sample:
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Output Sample

a Store Sample: > o
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: Sample: Sample (n 2 no. o
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] If e

Increment
Output Counter:
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Interpret Index
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de-aliased data (y[m])

& Figure 3.11: Subroutine RECONSTRUCT. =
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:: used. The minimum variation criterion presupposes the latter. If .V is much greater’
N

than the number of significant harmonics in the waveform, then the algorithm should

-~

not fail, and 7, should approximately equal r,,. We shall continue to assume that N
is always sufficiently large.

We now consider the effect of using a quantity of samples substantially exceeding
the unknown minimum M. This should increase the accuracy of the estimate of r,, and
yield better waveform reconstruction. However, the computational expense incurred
is generally very high since the order of the search time® is much greater than 0 {N}.
The search time consists primarily of the time required for computing composite period
variations using the trial periods. The number of trial periods is equal to the number

of critical period Farey fractions in the search range.

" I

Suppose that the number of samples available is substantially greater thar M.
Assuming M can be estimated very roughly (perhaps from the number of harmonics
postulated), it seems probable that the minimum acceptable search density can be use.’
in an initial search to subs'ta.ntially reduce the uncertainty range of r,,. This range, over ;.
which the corresponding variation function would be constant (and minimized, as well),
would be delimited by the two critical periods spanning the returned estimate 7,.,.. A
reduced quantity of samples (Ng), slightly greater than M, would be used for this n
coarse search. Successively finer searches, requiring increasing Ny, could then be used
to reduce the uncertainty and refine the estimate of r,, further. This iterative procedure
would be terminated once either all samples had been used, the estimate was sufficiently
accurate, or the additional processing time became prohibitive.

In order to insure that the search density increases monotonically between iterations,
we must increment the Farey fraction order, rather than directly incrementing the
number of samples. We choose an initial Farey fraction order L,, and a Farey fraction

order increment AL. Equation 3.9 can be rewritten to show the relationship between .

"By perhaps an order of magnitude or more.

l./".

3This quantity is difficult to enumerate due to the irregular distribution of Farey fractions.

et e e e e T e e . . T T G T L s S ST
STV B RIS AP SRRSO I IPIPIF TS SRS I ST, ST S I SR I DD IS e T o WY S S A AR P T X SV




| A at A SR i o A i i et T T ety Py Jhet e S gl S S IS I T A A0 B e S te Lone g - B G A Zhi S0k i i 'l Ay N Sara ey

A A S S e i e L It T A A L A b

- the Farey fraction order and the reduced number of samples used on an iteration:

TRmsn

X L= {VL‘—IJ (3.38)

TRmin 15 the lower limit of the reduced search range on a given iteration, and will be

N
o specified below. Directly increasing Np does not insure monotonically-increasing L
- since Trmin also increases monotonically.
- Given Tpmin, we compute the reduced number of ;amples necessary to yield the
desired search density (approximately):
Ngr = Ltgmin + 1 (3.39)
If this value exceeds N, the number available, then all samples are used (i.e., Ng = N)
" for one final iteration. Once Ny is determined, the Farey fraction order must be
: recomputed using Equation 3.38, due to the greatest integer function involved, and
) also since Np may be limited, as above.
i 'The search range for the initial iteration is the original, full search range: Tgmin =
) Tmin ANd TRmaz = Tmaz- ON each iteration, the two critical periods spanning the estimate
r: Thest are retained to be used as the reduced search range |TgRmin,7Rmaz] ONn the next
- iteration. Since a Farey series of order L includes all members of an order-(L — 1)

Farey series, and Nz must increase between iterations (since Tgrmin can never decrease),
we know that these two critical periods will be among the critical periods in the next
iteration. (Recall that critical periods are Farey fractions whose numerators are less
than Ng.)

On the first search, initialization of the trial period generator consists of determining
the two order-L Farey fractions (r, and 7;) spanning the lower search range limit Tgmn
(in this case, = Tpm,n), in the same manner as in the original algorithm (see Figure 3.8).
However, the initialization algorithm typically requires some adjustment when given a

rational value Tgm,n- Thus on successive iterations, Farey fractions spanning the original

lower limit 7min (2alWways < Trmin), rather than Tgmn, should be found. A negligibie
amount of computation is then necessary to generate successive Farey fractions using

Equations 3.13 and 3.14 until a critical period greater than® or equal to 7gm.n is found.
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This value would correspond to r;. 7, would be the preceding (non-critical period)
Farey fraction. The Rader algorithm would then proceed as described in the previous

section.

Figures 3.12 through 3.14 contain flowcharts summarizing our implementation of
our modifications to the Rader algorithm. Together, the main program FAST-SCAN
and subroutine RADER-SRCH replace the main program RADER previously shown
in Figure 3.6. In addition. another module (subroutine RAISE-INIT) has been added
to implement the modification in trial period generator initialization. All otﬁer sub-

routines in Section 3.2 remain unchanged.

3.4 Examples

The Rader algorithm, as well as all other algorithms presented in this thesis, was
implemented in the C programmiag language on a VAX-11/750 minicomputer!? under
the UNIX 4.2 BSD operating system.!! Pairs of integers were used to represent rational
quantities such as trial periods. Double precision floating point numbers were used for
most other quantities (e.g., input and output samples, and variations).

Figures 3.15 through 3.17 compare several recovered signals with their aliased coun-
terparts. Oversampled signals are also shown for comparison, though their normalized
time scales differ from those of the aliased and recovered versions, as noted in the
captions. Figure 3.15 shows the simple case of a single sinewave originally having nor-
malized frequency ¢, = .734531, aliased to ¢ = .265469 (with a phase shift of n). The
frequency determined using the algorithm was .734375, in error by only .02%. Approx-
imately 8 seconds were required to process 50 samples. The missing composite period
samples are clearly evident in the plot.

Figure 3.16 contains a more harmonically rich, synthetic waveform comprising ten

equal-amplitude sinusoids superimposed on a small d.c. offset. While the original signal

9The “greater than” applies only to the first iteration since rgm,, must be a critical period in all
subsequent iterations.

10VAX is a trademark of the Digital Equipment Corporation.
HUNIX is a trademark of AT&T Bell Laboratories.
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aliased data (N samples),
full search range (Cpin »7T max )s
initial Farey Fraction order (L),

F.f. order increment (AL)

'

Program
FAST-SCAN
Check Increment Farey
Search Range Fraction Order:
(PS-NYQ-CRIT) L =LQA+AL)
. Sort Data Using
Finest : ;
Read Best Trial Period:
Aliased Data Searc(g C(erfx\?)leted T
R ,,' (RECONTRUCT)
Begin with Full Obtain' C Eod )
Search Range: Estimate of T, :
TRm f ¥ min ‘wa
TRmax = Tmax (RADER-SRCH) ' L
L 4 final estimate of
pCHOd (Tm = ll/V),
Initialize Farey de-aliased data (u samples)
Fraction Order —
(for Coarse Search):
L = Lo
Compute Reduced Enough UscSAll “l\vailable
x Number of Samples: | Samples Available Lasaf}&f: on
Ne=LT,  +1 (NgSN) N
? R=
Notes:
t t Also determine new, narrower search range for next iteration.
~ Figure 3.12: Program FAST-SCAN. Bold blocks indicate additions to or modifications
of Figure 3.6. (Also see Figure 3.13.)
¥
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Re-caiculate Farey aliased data (first Ng
Fraction Order: Subroutine samples), reduced search “i
R LS RADER-SRCH range (Tgmin, T Rmax )» "
1T o oniginal lower limut (T _ ) ’
y =
Find FFs . Set Flag
: Store Poteniial “8
Spanning T : : . "Non-Critical N
T, T, T;’al B °2°d‘ X" Period Found”: 2
(INTT-FF-SEQ) 8 2 NCPF = TRUE
Spanning Tg. .. Vaiue Found ' T, ie? :1ence. -
T, ,T2 for Trial Period 7. = next FF =
(RAISE-INIT) ? 2
Initialize Uncertainty T, a Clear Flag
] " - ey at
Range o e Retumed) & Cated Peros oo ol 5
Ty= 1T, ? E NCPF = FALSE S
Store Potential Initialize Best Entire R ¥
Uncertainty Range Variation: | nSearchfZige 9
Limit to be Returned: Voest = V(T pest )
Troo =7, (VARIATION)
ot Store New Reduced -
T, a Imgahzc Best Search Range.
Critical Period Trial Period: g
'-’ i fame S
C Return ) .—
Calculate Median Initialize Best
of T, ,T,: — Trial Penod: intermediate estimate of
Tﬂ‘kd Tbesl =71 med PenOd ( Tbcs[ = U/V), b
critical periods spanning
Notes: Toest (TRminsT Rmax )

t Either T3 is first candidate for next trial period T4 (i.e., NCPF = FALSE), or
numerator of T2 < numerator of previously stored candidate (if NCPF = TRUE).
Using new value will result in fewer missing composite period samples.
} T, returned will be smallest critical period 2 TRmin . .

Figure 3.13: Subroutine RADER-SRCH. Bold blocks indicate additions to or modifi-
cations of Figure 3.6. (Also see Figure 3.12.)
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h Use Median
of T, ,T, as
Trial Period:

: S

Store Variation
L Using Trial Period:

Viewo = V(o)
(VARIATION)

Best
Reconstruction

(Vm :Vm )

Store Best Store Best
Variation: ———p»t Estimate of Period:

. l

Update Uncertainty
v <— Range to be Returned;

TL=1
To = 7

R \ 4
- Store Potential , .
Uncertainty Range Shlffr FF §e§uence. 6
Limit to be Returned: . 1 =%2
=T T, =next FF

< Tlgot 2

Figure 3.13: continued
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N
a N
l\_ :
; o
successive Farey fractions spanning T . (’tl » T )s N
reduced search range lower limit (tp . ;27 ") =
,‘,_.. r}.
Subrouunc ]
RAISE-INIT -
Ty a- Shift FF Sequence: -]
? T, =next FF T
5
T2 T
Span Lower Limit v-
(T9 2Tp, i ) -
2 9 Rmin -

Cor
i

successive Farey fractions spanning Tp . (T, , T,) o
Notes:
t Full search range lower limit.
.

Figure 3.14: Subroutine RAISE-INIT.
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is completely obscured by aliasing, as shown in Figure 3.16(b), it is readily apparent in
Figure 3.16(c). 200 samples were used, requiring 146 seconds. Identical reconstructions
were obtained using our FAST-SCAN version of the Rader algorithm with an initial
Farey fraction order of 100 and an order increment of 10% per iteration. In this case.
only 11 seconds were required.

The execution time is almost completely independent of the harmonic content of the
waveform. However, we see from comparing the two previous examples of the unmod-
ified Rader algorithm just how strongly the number of samples affects it. Experiments
with 500 or more samples have confirmed this. Execution time will be discussed in
greater detail in Chapter 5.

Figure 3.17 contains waveforms originating from 60 Hz line interference sampled at
10796.123 Hz. (This rate was chosen to meet the pseudo-Nyquist criterion irrationality
requirement.) Identical reconstructions were obtained using the Rader (unmodified)
and FAST-SCAN algorithms, the latter with an initial Farey fraction order of 250 and
an order increment of 10%. 250 sa.mpfes were used, requiring 551 and 15 seconds,
respectively.

We conclude this chapter with a brief look at typical Rader algorithm variation
functions Vy(7,), where N is the number of samples used. Figure 3.18 shows three
variation functions, all obtained from the aliased test signal of 10 sines which was used
above. They differ only in the number of samples (V) used in each case. The most
striking feature of the illustration is that the Rader algorithm converges to the true
signal period 7, as NNV is increased (though there is a slight undershoot for N = 50). In
addition, Vn(7,) continues to increase at all points 7, # 7, as N is increased, while it
quickly reaches a limiting value at 7, = 7,,.

The widths of the uncertainty ranges, i.e., the intervals over which the variations
are constant and minimized, decrease for increasing N. However, it is clear from the
plot that N = 25 would be insufficient as the number of samples to use in the initial
iteration of the FAST-SCAN algorithm since the resulting initial uncertainty range
would not completely contain the proper uncertainty ranges for subsequent iterations.

Nonetheless, FAST-SCAN would successfully determine 7, if an initial iteration sample
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Figure 3.16: Aliased synthetic signal (ten sines with d.c. offset) recovered using Rader
algorithm. (a) Oversampled signal. (b) Aliased signal ((a) downsampled by 100). (c)

Recovered signal (same normalized time scale as (b)).
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Figure 3.18: Convergence of variation function for increasing quantities of samples.
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Chapter 4

% SPEC-PEAKS — A Frequency
Domain Alternative to the Rader

Algorithm

T
o 5’- . . .

Like the Rader algorithm, the new algorithm to be presented in this chapter consists
of estimating the normalized period! 7, of an analog signal from aliased data, then re-
constructing the signal by using the estimate in an appropriate data sorting routine. As
before, a finite set of guesses is chosen, and some criterion is used to select the best one.
However, the guesses will now be determined in the frequency domain. Specifically, we
will use guesses of the fundamental frequency ¢,. Since they are analogous to the trial
periods in the Rader algorithm, they will be called trial frequencies. Reconstruction
will consist of sorting spectral samples corresponding to aliased harmonics using the
best estimate of ¢, among the trial frequencies, then inverse transforming the results.
Because the trial frequencies will be obtained by peak-picking the spectrum obtained
from the discrete Fourier transform of the aliased data, we will refer to the proposed
method as the spectral peaks algorithm, or simply “SPEC-PEAKS”.

Development of the SPEC-PEAKS algorithm is closely related to the theoretical

work in Chapter 2. Since we will often be able to draw upon this earlier work directly,

1Or equivalently, the normalized frequency, ¢,,.

......................
..................
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it will be appropriate to condense discussion of the general approach and a detailed
description of the algorithm into a single section, Section 4.1. Section 4.2 will discuss a
modification of the SPEC-PEAKS algorithm which. although not mandatory for signal
recovery, will yield lower reconstruction error in certain cases. The closing section of the
chapter will present examples of waveforms reconstructed using SPEC-PEAKS (with
and without the modification), along with the corresponding oversampled and aliased

signals.

4.1 General Approach and Detailed Description of
the Algorithm

Whether or not the normalized signal fundamental frequency ¢, is known, the first
step towards signal reconstruction comprises a discrete Fourier transform X|k| of the
aliased data z{n|. Our ultimate objective is to estimate the relative complex amplitudes
of all significant harmonics in the original signal directly from the DFT samples. The
aliased harmonics can then be sorted into a composite spectrum? whose inverse discrete
Fourier transform provides one period of the original signal.

We begin with the simple case where ¢,, is known precisely. The relative harmonic
amplitudes are approximately equal to the DFT samples X|k| which are nearest positive
and negative multiples of the fundamental frequency. In order to yield the appropriate
DFT indices, each multiple is first interpreted modulo the normalized sampling rate

@,, which is unity by definition, and then scaled with the DFT length R:
ki = [R(idw)1] 1 =0,%1,%2,... (4.1)

The new notation || has been introduced to represent the nearest integer or “rounding”
function.

Since only a finite number of time samples are used to compute the DFT, the
observed harmonics have measurable amplitudes. Observed harmonics never have zero

width; therefore, we can expect that large quantities of samples will be needed to avoid

2Here again we choose notation which is consistent with that used by Rader.
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}' destructive aliasing. If an insufficient number are used, adjacent aliased harmonics in

the observed spectrum may overlap, even when the signal and sampling rates are not
-n. integrally related. Assuming overlap does not occur, the relative harmonic amplitudes
found will be correct (to an arbitrary degree of accuracy, through zero-padding prior to
the DFT), and we can proceed to sort the aliased harmonics in frequency using these
values.

Harmonics from negative multiples of ¢, (Equation 4.1) are placed in the upper

Ty
' R I

portion of a composite spectrum® X,_;j|, and the remainder in the lower portion.

For simplicity, we hereafter wil assume that there are equal numbers of significant
harmonics in the original signal at positive and negative analog frequencies (excluding
d.c.), unless the signal is analytic. If a total of P harmonics including the one at d.c.

are localized using Equation 4.1, then they are sorted as follows:

Xkol — X,.[0]

Xky — X, (4]

X k.| —  X,.[2]

Xkea] — X2 (4.2)
IP+1]

X[k-"_;.i] — Xo.

X[k-z] — X¢.[P—2]
Xlko1] — X [P -1

Of course, conjugate symmetry should be exploited when recovering real signals.

The IDFT of the composite spectrum X,_|j] yields the recovered waveform z,_[m|,
the SPEC-PEAKS equivalent of the Rader algorithm composite period z, (m|. If de-
sired, X,_[j| can be padded with an arbitrary number of zero samples inserted between
the samples at j = (P —~ 1)/2 and j = (P + 1)/2, prior to inverse transforming.

We now consider the more common case where the signal fundamental frequency

®w is not known. We begin by briefly reviewing the theoretical, iterative procedure

3We use the index ; here to distinguish it from our other index k since the frequency scaling of the
composite spectrum X, /7] and the aliased spectrum X|k| will differ.
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outlined in Chapter 2 (Figure 2.1).

gl 1 R

The exact locations of the aliased harmonics were to be used as trial frequencies

®,, or guesses of @,. Knowledge of the signal high-frequency cutoff ¢, (= 14/01,) was
required, though the allowable range of values for 1, was completely independent of
the sampling rate 1,. Each ¢, was to be used in computing a tally of the number of
its multiples* less than ¢, at which the aliased spectrum was non-zero. The true signal

frequency ¢, would be given by the particular o, yielding the greatest tally.

:

.
;l
.
Kt
¢
E
by -
-
]

For the moment, we assume that a set of trial frequencies ¢, including ¢, can
be found. Nonetheless, we cannot collect an infinite number of samples, nor can we
compute an infinite length DFT, so the true line spectrum of an aliased signal cannot
be obtained. Therefore, we cannot compute meaningful tallies as in the ideal procedure
from Chapter 2. The procedure must be modified in order to yield a practical algorithm.

Suppose that each ¢, is used to compute a corresponding partial energy £ (¢4), which
we define as the total spectral energ; at all non-zero multiples of ®, whose absolute

values lie below some cutoff frequency ¢;:

L3
E(dy) = 2 IX[k]?P
ot (4.3)
ki = [R(iggh]
The limits L, and L, are given by
Li=-L, = [QJ (4.4)
by
The partial energies can replace the tallies in the theoretical procedure from Chap- . M
ter 2. They will serve the same purpose as the variations V() in the Rader algorithm, . ‘
viz., to indicate the best estimate of the signal fundamental frequency. £ (¢,) should i
be maximized at ¢, = ¢,. Assuming this is true in general, we now state a criterion = .:
for selecting the “best” trial frequency ¢,.,» from some suitably chosen set: R
Criterion 4.1 The trial frequency which yields the greatest partial energy is the correct
fundamental frequency, and the resulting waveform is the correct waveform. I l
4Positive and negative multiples would be used for non-analytic signals, and their absolute values .
would be compared with @». -
62
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;‘,x We will refer to this statement as the mazimum partial energy criterion. \
“ Trial frequencies can be obtained by peak-picking the aliased spectrum X'k over :'
n the range between the known® limits -
o =
{ -::. kmin = !‘R<¢mm>1q\ f'
b Y,
- and -
. kmaz = | R(bmaz)t] B
{ o The spectrum must be sampled finely since the trial frequencies are now given by inte-
gers k, which should correspond closely to the desired continuous frequency locations B
E of the harmonics. We will see that, as was §rue in Chapter 2, using “baseband” trial
[ frequencies k, (i.e., values corresponding to residues modulo the sampling rate) will not
i affect the reconstruction process. Other issues related to the choice of trial frequencies, &
such as spectral sample spacing and number of trial frequencies, will be discussed in ,
greater detail below. ;
i We now have specified the basic framework of the SPEC-PEAKS algorithm: a pro- :'-
cedure for choosing trial frequencies, a criterion for selecting the one which is.the best ::.
R approximation of the true fundamental frequency, and a procedure for reconstructing
the signal using this estimate. However, there are three practical matters which still ::‘:
. must be considered in implementing the maximum partial energy criterion. g
I First, due to spectral leakage, the collective peaks in the observed spectrum do not A
A consist solely of aliased harmonics, as in the true spectrum. It follows that using all of
- these peaks as trial frequencies may produce erroneous results. For example, a leakage
peak occurring at a submultiple of ¢,, would surely yield a higher partial energy than
;,f the desired peak at ¢, itself would, since all energy in the latter case would have to .
= be included in the former. If this frequency was chosen as the best estimate of ¢, the -
reconstructed waveform period would contain several periods of the true signal. Due '*
. to the nature of the algorithm to be specified below, the waveform probably would ,i
E lack more high-frequency information and certainly would contain more energy from >
spectral leakage than would a waveform reconstructed using ¢,. We therefore must
5 As required by the pseudo-Nyquist criterion.
F
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Y choose some subset of all the observed spectral peaks. It will be necessary to estimate s

r
: the minimum number of trial frequencies needed to insure proper reconstruction.

when the next computed multiple of the current ¢, was greater than some cutoff é,. The

>
*
v
¥
v
' Second, in the procedure in Figure 2.1, the energy summing process was terminated
N
Y
*-
N
N-

choice of ¢, was completely arbitrary in the sense that “excessively” large values would
have no effect whatsoever on the tallies obtained. The true spectrum would be zero

except at harmonic locations. However, this is not true for the observed spectrum, and

thus all partial energies will include some spectral leakage components from the highest
multiples of ¢,. Therefore, it is desirable to terminate the partial energy summation
as soon as possible. We should either use a small ¢,, or choose another termination

condition.

The last problem is due to the fact that the locations of the aliased harmonics
can be determined only approximately from the sampled spectrum. Therefore, the
partial energies computed using the resultant trial frequencies k, will be slightly in-
correct. In addition, even if the trial frequency closest to ¢, is chosen as ki, and Ei
it does correspond to the index of the spectral sample nearest ¢,, the estirated har-
monic amplitudes found using multiples of this value (just prior to reconstruction) will 2
probably differ from their true values. Since this error increases in proportion to the N
original (analog) harmonic number, it may be desirable to omit high frequency har- E 1
monics in reconstructing the waveform. The IDFT of the composite spectrum would _.
thus correspond to a low-pass filtered version of the original signal. . i

For simplicity, we require that P, the number of significant harmonics in the origi-

nal signal, be known. We define significant harmonics as all analog harmonics in some

frequency range -, < 0 < 1, (regardless of amplitude) which includes every har-

monic whose amplitude is greater than some arbitrarily chosen minimum. Therefore,

|'.'.'

S
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the number of significant harmonics at either positive (non-d.c.) or negative frequencies -
is given by <A
M= !; (4.5) . !
We now propose that the number of significant harmonics be used in all of the
following cases, each intended to alleviate one of the three problems above: » .
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1. Use M as the number of trial frequencies k,.

2. Use M as the number of pairs of positive and negative multiples of each k, to

sum in computing the partial energy & (k,).

3. Use P as the number of harmonics (including d.c.) in the composite spectrum

for waveform reconstruction.

The reasons for these choices follow.

In general, there are equal numbers (M) of aliased significant harmonics in the
lower and upper halves of the aliased spectrum, i.e., in the ranges 0 < k£ < R/2 and
R/2 < k < R. Since one of these two ranges must bound the baseband search range
{kemsn, kmaz]; M is appropriate as the limit on the number of trial frequencies. The
algorithm will fail if the spectral sample nearest the true fundamental frequency is not
among the M largest spectral peaks in the search range (or if it is not a peak at all).

With regard to the second case enumerated above, we need to change the limits
L; and L; in Equation 4.3 so that when the correct trial frequency is used, the cor-

responding partial energy contains no leakage components. The new limits are given

by

Ly=-Li=M= P—2?-—1 (4.6)
for non-analytic signals, and by
Ly=1
(4.7)
Lz = M = P -1

for analytic signals. Beginning with Equation 4.2, we have assumed equal numbers
of positive and negative harmonics, plus the one at d.c., for non-analytic signals. We
will continue to concentrate our attention on non-analytic signals since in practice they
are far more common, and the algorithm modifications needed for analytic signals are
minor.

Using P as the number of harmonics in the composite spectrum is consistent with
our choice of M as the number of pairs of positive and negative multiples of each trial

frequency to sum in computing the corresponding partial energy.
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The aliased input data zini should be weighted with some windowing function
hini and then zero-padded before the DFT is computed. The choice of window type
and size, as well as the total DFT length, has a significant impact on the quality of
signal reconstruction. From our standpoint, the maximum amplitude of the window
spectral sidelobes is most important. The signal cannot be recovered with the proposed
algorithm if the fundamental is masked by leakage. A hamming window is a reasonable
choice.

It is advantageous to use as many input samples as are available® since doing so
decreases the chance of observed harmonics overlapping. On the ¢ frequency axis we
have been using, the width of a hamming window main lobe is 4/N, where N is the
number of samples to be used, and therefore the length of the window, as well. When
using such a window, the widths of observed aliased harmonics are approximately equal
to this value.

There is another important implication of the data/window size N. The DFT
length R is also involved. Consider the effect of quantization along the frequency axis
on partial energy computation. Figures 4.1(a) and 4.1(b) compare the ideal and non-
ideal locations of the first few ¢, multiples used in computing £(¢,)|s.. In the first
case, ¢, = ¢,, exactly, while in the second, ¢, = ¢, + A¢. The frequency uncertainty
A¢, due to quantization in ¢, is bounded by the spectral sample spacing:

Ad < 2R (4.8)

We now propose that the windowed sequence z'[n] = z[n]h|n] be padded with
enough zeros so that the value of £(@,)|,, computed with the quantized ¢,, will consist
exclusively of energy from the smeared harmonics, as shown in Figure 4.1(b). This
is equivalent to requiring that each multiple of the quantized ¢, correspond to a fre-
quency somewhere on the appropriate smeared harmonic. Ideally, these multiples would
correspond to the observed harmonic peaks, i.e., to the true harmonic locations.

If there are P significant harmonics, with equal quantities (M in Equation 4.5)

8With the possible limitation of maximum tolerable processing time.
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Figure 4.1: First few trial frequency multiples used in computation of partial energy
¢(¢,). lmages of harmonics due to aliasing not shown, for clarity. (a) Ideal case:
#, = ¢ (no quantization in ¢). Hamming window width also indicated. (b) Non-ideal
case: 9, = @y +~ AO.
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at positive and negative frequencies, then the greatest error occurs in estimating the
locations (and therefore, the amplitudes) of the M** and -M*' harmonics. From
Equation 4.8, we see that the localization error of each of these two harmonics is less
than M/2R. We desire that

¥ MAg < 1‘/2—V (4.9)

Therefore, the DFT length must satisfy
R>|— (4.10)

wh;are [1 denotes the least higher integer or “ceiling” function. R — N zeros must be
appended to z'[n].

Figures 4.2 through 4.4 contain flowcharts summarizing our implementation of the
SPEC-PEAKS algorithm for non-analytic signals. They comprise a main program
(SPEC-PEAKS) and three subroutines, all of which are called directly from the main
program. Subroutine PS-NYQ-CRIT was shown previously in Figure 3.7.

Though the choice of the significant number of harmonics is clea.rl}'r not well de-
fined, the preceding algorithm has been used successfully in many instances, as will be
shown in Section 4.3. We first will present a minor modification of the SPEC-PEAKS

algorithm.

4.2 An Enhancement of the Algorithm

Towards the end of the previous section, we discussed the effects of quantization
along the ¢-axis on the computation of partial energies £ (#,). We are given N samples
(or may elect to use only N samples when more are available) and assume the original
signal contained P significant harmonics. We then choose the DFT size K so that when
the location of the discrete spectrum peak nearest ¢, is used as a trial frequency ¢,,
& (¢,) will contain energy from some portion of each smeared significant harmonic, and
from no other regions of the aliased spectrum. Assuming the maximum partial energy

criterion is correct, this peak location will be retained as the estimate of the true signal

fundamental, @ey-
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’ no. significant harmonics (P, odd)
- Estimate True Sort Aliased
el - Signal Fund. Harmonics
: Program Frequency —® | (SORT-HARM):
) SPEC-PEAKS (MAX-HARM-E) YIi]
Check Find M Largest Peaks Compute P-point
Search Range in X[k] in Range IDFT of Composite
(PS-NYQ- CRIT) Kmin $K<Kqpax Spectrum Y[i]

: ! f :

Convert Search

Read Range to Indices: Convert Index:
Aliased Data = |_R (® i N 1 Oregt = K pest /R
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- . Adjust’ Dpe to
Significant Harmonics Compute Squared e e
at Positive Fregs.: Magmitude of DET: Lie in Proper Range:
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. ¥ 5
Calculate Compute C End )
: DFT Size: R-point DFT:
= R= [NM/4] X (k]
~ & f fund. frequency (Ppes; ),
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N-point Hamming (——{ DatawithR-N
o Window Zeros (Appended)
- Notes:
t Add appropriate multiple of ¢ (unity by definition).

} (See previous chapter.)

Figure 4.2: Program SPEC-PEAKS.
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R-point magn. squared array (X[k]),
no. significant harmonics (P=2M+1),
M-point trial frequency array (k, [j])

Subroutine
MAX-HARM-E

Y

Reset Best Energy,
Tnal Freq. Counter:
j=0

Increment Trial

All

Trial Frequencies

Used (j 2 M)
?

Get New Trial
Frequency:
K emp =kl

y

Reset Temp. Energy,
Harmonic Counter:

Frequency Counte
j =j + 1

New
Guess Better

(Eremp >° Epest )

All
Signif. Harms.
Summed
i>M)
t‘,

Store New Estimate:
Kpest = k temp
Ebcst = E temp

Compute Next
Multiple of
Trial Frequency:
k = (iKemp)p

!

Sum Energy:
temp = Eu:mp +

X[k] + X[R-k]

v

Increment Harmonic

E(em=0
1 =1

)
v

index corresponding to estimate
of true fund. frequency (kpest )

Counter:
1 =1+1

Figure 4.3: Subroutine MAX-HARM-E.

70

. « v .
. PP
. Sy T
Py

r
-

r. ‘-l‘l
ek




.......

o~
R-point aliased spectrum (X[k]), .
no. significant harmonics (P = 2M + 1) N
A
N
!
Subroutine
SORT-HARM o~
Reset Harmonic =
Counter: T3
i=0 "{:
Store 0™
Harmonic (d.c.):
Y[0] = X[0]
Increment o3
ilarmonic Counter: o
i=1i+1
Storci™ and -i® All
(Analog) Harmonics: Harmonics Sorted Y 1
Y[l] = X[k] fi>M) <.
Y[P-i] = X[R-k] ' 2 -
Calculate Index of N
Next Aliased C Retumn ) -
Harmonic:
k= (o )y I 5
P-point compo..ite
spectrum (YT[i]) f:;:
N
Figure 4.4: Subroutine SORT-HARM. -
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Figure 4.5: Adjustment of estimated harmonic locations for reconstruction.

In reconstructing the waveform with ¢, the relative amplitudes of the sorted
harmonics in the composite spectrum may deviate considerably from the original signal
harmonic amplitudes. This is caused by error in aliased harmonic localization using
multiples of @y, interpreted modulo ¢,.

If each estimated harmonic location lies on the correct smeared harmonic, this error
can be reduced with the following procedure. Each estimated location is adjusted to
the location of the peak of the lobe on which it lies,” just prior to forming the composite
spectrum. The maxima and minima of the magnitude-squared spectrum are marked,
as shown in Figure 4.5. The spectrum is then searched for the peak marker between
the two minima markers that span the original estimated location. If a sufficiently
large DFT size is used, and leakage ripples do not create extra peaks on the smeared
harmonic main lobes, then the reconstructed waveform should more nearly resemble
the original waveform.

The adjustment procedure can only be used in reconstruction. It cannot be used to

increase the accuracy of the partial energies, all but one of which are computed using

"This does not imply the nearest peak.
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an incorrect trial frequency.

A flowchart depicting the harmonic adjustment procedure is given in Figure 4.6.
Also shown are the necessary modifications to program SPEC-PEAKS in Figure 4.2
and subroutine SORT-HARM in Figure 4.4.

4.3 Examples

Figures 4.7 and 4.8 show examples of signals recovered with the SPEC-PEAKS algo-
rithm, with and without the harmonic adjustment procedure described in Section 4.2.
Since the same test signals were used for this chapter and the previous one, only the
corresponding oversampled signals are repeated here, since they are ﬁseful for compar-
ison with the recovered waveforms. The aliased signals can be found in Section 3.4
using the references provided in the new figures. Also noted in each caption is the
normalized time scale factor by which the oversampled and recovered signals differ.

Figure 4.7(a) contains a test signal composed of ten equal-amplitude sinusoids su-
perimposed on a small d.c. offset. The signal shown in Figure 4.7(b) was recovered with
the unmodified SPEC-PEAKS algorithm. Figure 4.7(c) shows the signal recovered after
harmonic adjustment. This waveform more nearly resembles the one in Figure 4.7(a).
Less high frequency information has been lost, and the phase is correct. On the other
hand, the error in the middle of the reconstructed period has been accentuated by
harmonic adjustment. 1000 input samples were used for both cases, each requiring 7
seconds. (The harmonic adjustment time is negligible.)

Figure 4.8 contains waveforms originating from 60 Hz line interference sampled at
10796.123 Hz. Thesignal in Figure 4.8(b) was recovered with the unmodified algorithm.
It is quite similar to the one in Figure 4.8(a), with the exception of the loss of a minute
amount of high frequency information. As before, the third plot provides the recovered
signal after harmonic adjustment. 1000 samples were used for each, requiring 8 and 9
seconds, respectively.

In both examples above, harmonic adjustment results in greater retention of higher

harmonics since the estimated locations are moved to nearby spectral peaks (see Fig-
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estimated harmonic location (Kyest ) Y
R-point max/min marker array (mark(k]) oo
Subroutine ,
ADJ-HARM il
Store Original ¥
Harmonic Location: -
klemp = Kpest
Check Next Highest Check Next Lowest Store Location 4
Spectral Bin: Spectral Bin: of Peak: M
k = (Kpmgrl) k ={(k -1 Kpest = Kiem o
temp temp™ ! /R temp ( temp R P ~d
B ¢ -
y Restore Original ( Return )
g Harmonic Location:
k temp = K pest ‘
adjusted harmonic _
location (K peg, )
Notes: i
T Reverse search direction. .
(a) .'_': :’
RN
u

Figure 4.6: Subroutine ADJ-HARM. (a) Subroutine:. (b) Modification to program
SPEC-PEAKS, Figure 4.2. (c) Modification to subroutine SORT-HARM, Figure 4.4.
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Figure 4.7: Aliased synthetic signal (ten sines with d.c. offset) recovered using
SPEC-PEAKS. Compare with Figure 3.16. (a) Oversampled signal. (b) Recovered
signal (time scale 1/100¢* of that in (a)). (c) Recovered signal after harmonic adjust-
ment (same time scale as (b)).
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of that in (a)). (c) Recovered signal after harmonic adjustment (same time scale as

(b))
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ure 4.3). However, the adjustment procedure clearly increases reconstruction error
when the original harmonic locations lie on the wrong spectral peaks, as is the case for

at least one harmonic in each of the two examples.
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Chapter 5

Analysis and Conclusions

In this chapter, we will examine the accuracy and efficiency of the reconstruction
algorithms described in the preceding chapters. There are four algorithms and variants
to compare: the original Rader algorithm, with and without the FAST-SCAN mod-

ification entailing successively finer searches; and our SPEC-PEAKS algorithm, with

and without the harmonic adjustment modification. Many of the trials will correspond"

to unfavorable conditions such as wavering signal amplitude and frequency, dynamic -

harmonic content, and addi.t;ive noise. Representative output will be provided in the
accompanying figures and tables.

Section 5.1 will discuss the quality of reconstruction achievable with the various
algorithms. Particular attention will be paid to algorithm robustness, and cases likely
to yield poor results. In Section 5.2, we will evaluate algorithm efficiency in terms of
execution speed, and input and output data storage requirements. Since our harmonic
adjustment modification affects only the accuracy (and not the speed) of our SPEC-
PEAKS algorithm, it will only be treated in Section 5.1. Likewise, since our FAST-
SCAN modification only increases the speed of the Rader algorithm, discussion of it
will be limited to Section 5.2. Assuming the number of sampleé used! always exceeds
the minimum number needed for sufficient reconstruction quality (see Section 3.3), the

output from the unmodified and modified Rader algorithms will be identical.

! Per iteration in the FAST-SCAN case, and overall in the unmodified case.
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5.1 Reconstruction Quality and Algorithm Robust-

ness

In the course of algorithm development, many assumptions have been made, the
validity of which can be ascertained only empirically. In this section, we will conduct
tests which will indicate the classes of signals and types of conditions for which these
assumptions fail. Plots of data from these tests will also permit subjective comparisons
of the various algorithms.

Most plots will contain segments of the oversampled? and aliased sequences. Seg-
ments of the former typically will correspond to one or two periods of the original
waveform; segments of the latter will represent portions of algorithm input correspond-
ing to many periods. In contrast, the recovered waveforms will contain all the data
used, and will always correspond to exactly one period, as evident from the algorithm

descriptions presented earlier.

We know from Chapter 2 that any signal whose fundam‘enta-l. frequency is 'integrallly
related to the sampling rate generally cannot be recovered. Specifically, if the normal-
ized signal periodyg, (or 1/¢,, where ¢, is the normalized fundamental frequency) is a
rational number u /v, then destructive aliasing (i.e., spectral overlap) may occur unless
all signal harmonics occupy u or fewer adjacent harmonic locations. No algorithm,
including the Rader algorithm and SPEC-PEAKS, can completely reconstruct such
aliased signals. Nonetheless, it is interesting to examine distorted results.

Figure 5.1 contains reconstructions of an aliased, harmonically-rich test signal whose
period 7, is 10/7 (on the time scales in (b) through (d)). No matter how many aliased
samples are collected, each corresponds to one of only 10 values, as apparent from the
periodicity of the sequence in (b). This is also clear in Figure 5.1(c), in which the time
samples have been sorted using the Rader algorithm. It might be possible to improve
this reconstruction by discarding the redundant samples in this plot and interpolating

the results, but this has not been investigated.

2The oversampled sequences will be shown only for comparison. In no case were they used as input
to a reconstruction algorithm.
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Had the aliased signal been reconstructed with the Rader algorithm using the true
signal period 7, (which is itseif a critical period) instead of the value found r,,,, consid-
erable output sample overiap would have occurred. Since the Rader algorithm always
returns an estimzlxte These Which is not a critical period, this can never happen. In all
cases similar to the present one, we would expect composite per.iod samples with equal
ordinates to be adjacent since 7y, and 7, typically are nearly equal.

The corresponding results from the SPEC-PEAKS algorithm (Figure 5.1(d)) are
also unacceptable. Note the presence of an unwanted peak between the two largest
positive peaks, and the corresponding region in the Rader algorithm reconstruction.
These effects were caused by the higher harmonics in the original signal being folded
into the lowest ten harmonics.

Figure 5.2 presents an example of how the Rader algorithm excels in recovering
aliased discontinuous waveforms. Provided that a waveform is smooth, with the excep-
tion of a few discontinuities, the minimum variation criterion would seem to hold. The
results obtained using SPEC-PEAKS and assuming 40 siéniﬁcant harmonics are good,
but a loss of high frequency information is evident. When the number of harmonics to
be recovered was increased, the errors in localizing higher harmonics detracted from
the quality of reconstruction.

The improvement obtained with the SPEC-PEAKS harmonic adjustment procedure
is visible in comparing Figures 4.7(b) and (c) from Section 4.3. However, in many
other cases this procedure proved to accentuate rather than reduce the error of SPEC-
PEAKS in estimating harmonic amplitudes. In almost half the trials performed, the
reconstructions were worse when harmonic adjustment was used.

The SPEC-PEAKS algorithm performs better than the Rader algorithm in de-
aliasing waveforms whose relative harmonic amplitudes change over the sampling in-
terval, such as the one shown in Figure 5.3. This is due to the fact that the locations
of the largest spectral peaks (i.e., the harmonic locations) typically remain unaffected
when the complex harmonic amplitudes change. SPEC-PEAKS effectively integrates
the information obtained over the sampling interval — the harmonic amplitudes in the

reconstructed waveform represent average amplitudes.
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We see in Figure 3.3(e) that the Rader aigorithm formed a composite period which

S

appears to contain three similar periods. The width of the composite period (7sese =

v'u
’
al
»
o’

1.39161) is also incorrect. The minimum variation criterion does not hold here (nor ’

b - was it intended to) since the ordinates of the original waveform at the same temporal

I

positions within different periods are not equal, as they normally would be.
- The performance of all algorithms is poor in recovering a waveform whose frequency
or amplitude is not constant. The examples shown in Figure 5.4 correspond to a steady e
tone (the vowel @) from a male speaker. Both the frequencj and amplitude of the tone
waver slightly over the sampling interval. The results from the Rader algorithm are
similar to those in the previous example (Figure 5.3(e)). The images of several similar
periods appear in the composite period (reversed in time, as well). Again, the minimum
C variation criterion does not hold for the same reason.
S SPEC-PEAKS is only marginally better in that it is at least useful for determining =
- the average fundamental frequency of the signal. The estimated frequency and average :.'-
i true frequency were very close. This is not an unreasonable result since the aliased
harmonics are smeared by wavering frequency and amplitude, but the location of the
main peak of each harmonic typically remains undisturbed. In both reconstructions,
the original waveshape is distorted considerably.

Both the Rader and SPEC-PEAKS algorithms proved to be robust in terms of
sensitivity to additive white gaussian noise. The four plots (a, c, e, and g) on the left
side of Figure 5.5 correspond to a noiseless 60 Hz line interference test signal. Those '
on the right (b, d, f, and h) correspond to the test signal plus white gaussian noise.
The signal-to-noise ratio (SNR) in Figures 5.5(b) and (d) is 18.4 dB.

Figure 5.5(f) shows the noisy aliased waveform in Figure 5.5(d) recovered with the
Rader algorithm. The period determined here, 75, = 1.79723, is identical to that in the _
noiseless case (Figure 5.5(e}). This is also true of the corresponding waveforms shown o~
- in Figure 5.5(g) and (h), recovered using SPEC-PEAKS. In both plots, ., = 1.79499.
In addition, the SPEC-PEAKS algorithm removed nearly all the noise present in the
aliased signal. However, since r, is known approximately, it seems reasonable that -

the Rader algorithm output can be processed with a comb filter to achieve resuits

85




»

L g

.,

.
*

L}

1]

v

v

.

.

v

«
3

1
»

’
8
l
1
v
D
’
'
.

»

&
3

vy fa .
&3
-
©w 4
.
v. e
IS
A A
S .
~N [l -~
L |
- i .-'
— _____‘___-‘—ﬁ_— —_ “y -:{
o — : k-] ..‘,. ¢
2 | 2 o
: Y
. : °
=3 -
- ................ - ow \:-
. ﬁ___ ~ :-.__
S — DL
———
i . — : LR Lty
: 1 : ° = o R
Q Qo [~ (-] o (=4 [~4 (=4 o o [=J Q . o
=1 o o o (=] (=] =3 (=1 o Q .
= o = o o o = b= e b1 o
("] [~} n [} Q Q o (=] o QM .
- - ) - [+ < o~ ~N <~ oy . N
[ h ' o -
2 : 5§
= - L) Fy
L“’
- RS
o
~ . ::‘.
3 3 m
:=: ::;.
a - :-_.
4 S ">
o o T .".‘-
o o o o (=3 o o (=4 o o [= (=4 —
[~ Q (=] Q o o Qo Q o <
Q o o (-] o b o Q Qo [~
g g & 8 8 g & 8 8 8
) t
Figure 5.4: Poor reconstructions when fundamental frequency changes. Test signal:
steady tone (vowel @) from male speaker, sampled at 10 kHz. (a) Oversampled signal.
(b) Aliased signal ((a) downsampled by 10). (c) Signal recovered using Rader algorithm. e
(d) Signal recovered using SPEC-PEAKS. (¢) and (d) have same normalized time scale s

as (b). -




o n =
1 =
o o~ -
A .
» g ——————= [
—_— 1 .
k)
B =
> X . e @ ] e - - L ~ ?
. = 2
Lx ——— -~
py R :
2 s 3 : =—— o4
! Lo P —— A .
— 1 3 =
. = o : ) ;
'..' [ -] [-] =3 o (-3 g o g 8 e
- : 8 g 2 g 2 g g %
g g 0
= ~ —— ° 3
-]
., S — =
- — . %
. ‘. 3
..~ s
I NP s ¢ —= 3
- & | | = — : 3
o —
L2 — ©
S (-4 = o o o Qo [=] .
. 3 e 3 8 8 3 -
- - T - o c}; -It
Figure 5.5: Reconstructions of noisy waveform. Test signal: 60 Hz line interference. :::I
p . ..
L (a,b) Oversampled signal with and without noise (SNR = 18.4 dB). (c,d) Aliased signal
with and without noise (SNR = 18.4 dB). (e,f) Signals in (c) and (d) recovered using
o Rader algorithm. (g,h) Signals in (c) and (d) recovered using SPEC-PEAKS. Time "

scales in (c) through (h) 1/100** of those in (a) and (b).

> 87

e e e o
.'-‘I'i"‘- Y - ‘..;'.,'. MY '...
LIV IR T . PR S A PR R b U




66%61°1 St i

0

00001t -

0006 -

' (w)

€2L6L°L S 1 3

6696.°L st 3 S0

0000t -

000S-

0 0
000S
0000} 00001
(8) >

0 €26l ¢t 3 S0 0
ooov- 000y -

ol 3

T

-

0002-

0002

000y

»

bt Rl

B S Sl I R A 4

* 4, % Y XN LR N LS T

0002-

0002

000V

(o)

. continued

Figure 5.5
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comparable to those from SPEC-PEAKS. This has not been pursued further.

For the noise tests, the point of algorithm failure was defined as the SNR for which
the estimated periods 7., found in the noiseless and noisy cases (using a given al-
gorithm) were no longer equal. The Rader algorithm did not fail until the SNR was
decreased to 12.4 dB. SPEC-PEAKS was extremely robust, successfully estimating 7,
for SNR = -9.53 dB. However, all of these excellent results are surely due to the
presence of a strong fundamental in the original signal.

Another additive corruption test was performed, consisting of the superposition of
the two altased test signals shown in Figures 5.6(c) and (d). For these tests, we defined
a “signal-to-signal ratio” .

SSR = 10log,, (%‘9—‘)

ng2
where o2, denotes the variance of signal Q.-

The Rader and SPEC-PEAKS algorithms were used to recover the stronger of the
two superimposed‘ signals for various SSR,' as summarized in Table 5.1. The definition
of algorithm failure was analogous to that used previously in the noise tests. The weaker
signal in each case was considered the corruptive one; thus, it replaced the noise in the
definition above. By this criterion, SPEC-PEAKS was considered successful on every
trial, as indicated by the boldface values in the table. The Rader algorithm failed to
determine ¢, for SSRs in the range 10.1 to —19.4 dB.

Reconstructions from four of the trials enumerated in Table 5.1 are shown in Fig-
ures 5.6(e) through (p). These plots are arranged in groups of three (e.g., e, f, and g)
comprising the aliased test signal and the waveforms recovered using the Rader and
SPEC-PEAKS algorithms. The advantages of each algorithm are consistent with those
seen in previous experiments: SPEC-PEAKS is much better at determining ¢,, at low
SSR (magnitudes), and in addition, removes most of the unwanted signal for higher
SSR. On the other hand, the Rader algorithm retains more high frequency information
in the dominant or recovered signal when successful.

We conclude this section with a few general reconstruction issues not discussed
elsewhere. From Section 4.1 we know that the accuracy of the SPEC-PEAKS algorithm

in determining &, depends directly on the DFT size. Therefore, the typical spectral
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Figure 5.6: Reconstructions of two superimposed waveforms. (a) Test signal #1: 60 Hz
line interference. (b) Test signal #2: three sines, two sawtooths, one square-wave. (c,d)
Aliased test signals (#1 and #2 downsampled by 100). (e) Superimposed aliased test
signals (SSR = 13.6 dB). (f) Signal in (e) recovered using Rader algorithm. (g) Signal
in (e) recovered using SPEC-PEAKS. (h-j;k-m;n-p) Same as (e-g) for SSRs 0.55, —0.36,
and —20.4 dB. Time scales in (c) through (p) 1/100** of those in (a) and (b).
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A
b
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=
R p
A g
- 4
‘I SSR ' Dbest !
! 'dBl ' Rader algorithm SPEC-PEAKS | :
196 @ 0.554987 = 0.554932 b
13.6' | 0.554987 0.554932 | -
T 10.1 |  0.910979 0.554932
- 760 |  0.910979 0.554932 -
. 566 |  0.910979 0.554932 | =
= 4.07 0.910979 0.554932 s
2.74 | 0.910979 | 0.554932
1.58 0.856187 0.554932 |
: | 055 0.856187  0.554932 |
. -0.36" 0.856187 0.712402
] 6.38 0.856187 0.712402
~9.90 0.856187 0.712402
= -12.4 0.856187 0.712402 |
~14.3 0.856187 0.712402 |
- -15.9 0.856230 0.712402
B ~17.3 0.856230 0.712402 |
-18.4 |  0.856230 0.712402 |
-19.4 0.856230 0.712402 |
-20.4' | 0.712435 0.712402 |

Table 5.1: Estimation of ¢, from two superimposed waveforms. Test signal #1: 60 Hz

[ &4 d

line interference, ¢, oy = 0.555755. Test signal #2: three sines, two sawtooths, one
square-wave, @, ny2 = 0.712431. Boldface numbers indicate results identical to those
obtained from stronger aliased signal alone (using same algorithm). * signify trials

plotted in Figure 5.6.

.t

D
~

»
i




resolution is
o

NM

in units of normalized frequency, where .V is the number of samples used, and M is

R, =

the number of significant harmonics at positive frequencies.

The accuracy of the Rader algorithm is a function of the search density or Farey
fraction order, which in turn depends on both N and the lower period search range
limit 7msn. However, it can be estimated only roughly since the Farey fractions are
distributed non-uniformly. Rader has stated that the average period accuracy can be
obtained from the reciprocal of the density of the Farey fractions. For a given order L,
there are approximately

3L
-+ O{Llog L}

Farey fractions on any interval® (r,r + 1), where r is a real number. Since L = (N —
1)/ Tmin, the average temporal resolution is

2,2
T Tman | , (5.2)

B

in units of normalized time. Rader has also mentioned that in the worst case, R,
becomes tm,./N, and in addition, both this and the estimate in Equation 5.2 are
optimistic in that the density of the critical periods (which truly determines the search

density) is less than the density of all the Farey fractions.

It would be desirable to avoid the u — N missing samples in Rader algorithm recon-
structions, where u is the numerator of the period ,., returned. One might consider
not using all the available data so that u — N leftover samples could be inserted into
the reconstructed period. However, this should not be done since these u — N samples
would have very erroneous ordinates for the missing samples they were intended to fill.
Had we used u (> N) samples in the first place, the search density would have been

finer (L = |(u — 1)/7min ), and there still would have been missing samples.

3The Farey fractions in any interval (r + ¢{,7 + 1 + 1), where r is a real number and 1 is an integer,
can be obtained by adding : to each Farey fraction in (r,r + 1). Therefore, the average densities in any
such pair of intervals are equal.
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Table 5.2: Rader algorithm recovery time vs. number of input samples, N. Typical
values shown. Search range: 0.5-1.0.

5.2 Algorithm Efficiency

As could be expected, the speed of all algorithms is dominated by .V, the number
of samples used. The speed of the Rader algorithm, like its accuracy, depends on the
density of the critical periods in the search range. One value of the variation function is
computed between each pair of successive critical periods, each requiring computation
of order O {N}. Therefore, from the previous section (Equation 5.2) we know that fora
given search range, the total computation is typically O{N3}. In all cases, it is greater
than O {N?}.

Typical reconstruction times versus number of input samples are given in Table 5.2.
The values in this table, as well as the tables to follow, correspond to real time (i.e.,
elapsed, not cpu time). All timed experiments in this thesis were performed during
periods in which system load averages were low (typically overnight, when there were
no interactive users on the system).

Equation 5.2 indicates that the Rader algorithm speed also depends on the upper
limit of the fundamental frequency search range, @mar = 1/7min. We will now show that
any search range @ ,-¢',,, whose respective limits are congruent modulo one (“0,”)
to the true limits ®m,n and Gmar can be used. This allows us to pick a range expected

to reduce execution time. We would then reconstruct the waveform ezactly as before.

Finally, we would relabel the time axis of the reconstructed period and temporally
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reverse the data (if necessary) to vield the same results that would have been nbtained
with the original search range.

Recall from Chapter 2 that identical sequences are formed in sampling two analog
signals whose normalized fundamental frequencies o,; and ¢,; differ by some integer.
Alternately, if the sum of ¢,, and ¢, is an integer, one sequence is the time reversai
of the other. In fact, it is for these reasons that the correct waveshape can always* be -
recovered. even if the proper search range is unknown. In the latter case, any search -
range not spanning a muitiple of 1,2 couid be used with either the Rader algorithm or
SPEC-PEAKS.

Figure 5.7 contains two plots of the variation function produced while recovering
the waveform shown in Figure 5.8(a) using the Rader algorithm. A search range @m,n-
®maz Spanning several multiples of 1/2 (thereby violating the pseudo-Nyquist criterion) i
was used. Plotted versus the reciprocals of the trial periods r, (Figure 5.7(b)), V(r,)
is periodic. Note ‘*he similarity between the portions of the variation function in the
regions ¢, = 0.5 to 1.0 and ¢, = 1.5 to 2.0, as well as the symmetry about integral
®, (in particular, ¢, = 1.0). The presence of equivalent minima in these three regions

clearly indicates the fundamental frequency ambiguity problem addressed in Chapter 2.

We now return to our examination of the effect of different search ranges on Rader
algorithm execution time. The pseudo-Nyquist criterion dictates that each search range
must lie between two successive multiples of 1/2. Figures 5.8(b) through (h) contain
reconstructions of the test signal in Figure 5.8(a) after it was downsampled by 100.
The corresponding search ranges are listed in Table 5.3, along with the reconstruction
times. The seven reconstructions are identical (with the exception of the time reversal
in every other plot). However, the search times for search ranges p/2-(p + 1),/2 (for

8 integral p) decrease monotonically, as do those for ranges (p ~ 1)/2-p/2. The decrease
E of the aggregate is almost monotonic. as well.
The latter result can be explained as follows. The same number of Farey fractions »

of a given order lie in each range (1,1 ~ 1) along the r,-axis for all integers 1. Therefore.

4 Assuming no destructive aliasing has occurred.
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Table 5.3: Rader algorithm search time vs. search range. Same number of samples
from same aliased signal used in each case. References to Figure 5.8 also given. Correct j:::
search range: 1.0-1.5. ’

7 s
.
LI

they become increasing sparse along the positive ¢,-axis since ¢, = 1/7,. On the other
hand, a higher search range @mn—0dmasz (equivalently, 1/7maz~1/7min) causes the Rader
algorithm to use a higher Farey fraction order, as indicated by Equation 3.9. The
decrease in the search times given in Table 5.3 is due to the fact that these two effects g
do not cancel. The former seems to be slightly stronger. Therefore, the search density

and execution time tend to decrease for higher search ranges.

s,

While the reductions in Rader algorithm reconstruction time can be large® when us-
ing our FAST-SCAN modification, they cannot be quantified even roughly (empirically
or otherwise) since the initial Farey fraction order and increment are chosen heuris-
- tically. The minimum initial order for which the minimum variation criterion holds
cannot be determined.

; The time required by SPEC-PEAKS is typically of order O {NM log NM} where
. M is the number of significant harmonics at positive frequencies, since most of the )‘
processing time is spent computing the finely sampled DFT. In practical situations, the -
size of the IDFT producing the output is much smaller. Recovering waveforms using

1000 samples and assuming 10 significant harmonics at positive frequencies typically )
required 5-11 seconds. An example of the dependence of SPEC-PEAKS on the number .

of harmonics is summarized in Table 5.4, in which 1000 samples were used on each

- 5An order of magnitude or more was not uncommon, but the comparision has little merit.
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110 7 ,»
20 | 12 |
30 | 14 4
40 | 25
50 26
60 27
70 53

Table 5.4: SPEC-PEAKS recovery time vs. number of significant harmonics at positive
frequencies (M). Typical values shown. 1000 samples used.

trial. No other .tables are given since the speed performance of SPEC-PEAKS versus
N is predictable from the discussion above.

In contrast to the Rader algorithm, neither the accuracy nor the speed of SPEC-
PEAKS are effected by the search range émin—-®msz. One of the first steps in the
SPEC-PEAKS algorithm consists of converting the search range to the corresponding
(baseband) DFT indices.

It was found that SPEC-PEAKS typically required an order of magnitude more data
than the Rader algorithm to yield comparable reconstructions. SPEC-PEAKS was still
much faster in these cases, but the comparison must be viewed in light of the fact that
SPEC-PEAKS always loses some high frequency information. Another advantage of
the SPEC-PEAKS algorithm is that it can place the output data in minimum storage
form (i.e., sampled just above the Nyquist rate} with no additional computation. In

such cases, the composite spectrum would not be zero-padded.
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Chapter 6

Suggestions for Future Research
We conclude this thesis with a list of suggestions for future research. -
The pseudo-Nyquist criterion we have developed may be too restrictive in certain \
cases (as was true of the original Nyquist criterion, as well). We have shown that the f &
irrationality requirement is unnecessary if {1,/{., can be expressed as a rational number '3 e
u/v where (u,v) = 1, and fewer than u consecutive signal harmonics are present. This . \
issue is coupled with the requirement for an arbitrary high frequency cutoff 1, since the ! .
latter insures a finite (though unknown) number of harmonics. Alternative definitions 2
of the pseudo-Nyquist criterion are certainly plausible. b
Most of the Rader algorithm processing time is used to compute the collective - "
variation functions. Significant savings should be possible by exploiting the fact that ’
only a few composite period samples interchange in moving from one trial period to
the next. (Visualize the effect of increasing the diameter of the cylinder in Figure 3.1.) - K
If the original indices n of these samples z{n| can be determined, the variation from
the previous iteration can be reused. A few terms would then be added to correct for o
the interchanging sampies. Only one of the samples must be located since for a given I
trial period 7, = u/v, the multiplicative inverse of v for the modulus u can be used to
locate the others (see Section 3.2). The fact that aliased samples z[n| at higher indices P
n would move clockwise! in the composite period faster as 7, is increased might also . o
be useful here. Finally, if it appears that the overhead incurred is high (e.g., if many N
1Viewing the cylinder in Figure 3.1 from the top. ":; '..
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samples interchange), the variation could be computed in the original manner. .

Interpolation of missing sampies in Rader algorithm reconstructions shouid be ex-

n‘ plored. Methods which are insensitive to sample spacing (e.g., Lagrange interpolation) :

would seem to be most suitable. Conventional discrete time filtering techniques may -

LR ]
CO )

aiso be appropriate since the reconstruction samples (including those which are miss-

cﬁ' u""

ing) lie on a uniformly spaced axis. Rader has suggested moving median filtering,

followed by linear filtering. The median would be redefined as the mean of the medians

of subgroups of points. Redefinition is necessary since the conventional median of three

——

i - consecutive points is undefined if one or more of the three are missing.
Another interpolation method which may be applicable has been proposed by Naidu -

and Paramasivaiah (11]. It comprises an extension of the Gerchberg-Papoulis algo-

rithm [12], originally for extrapolation of band-limited signals, to interpolation of miss-
ing samples. Knowledge of the bandwidth of the original signal and an average sampling -
rate’? above the Nyquist rate are required, but neither condition should pose a problem :;
here. Marks [13] has also succeeded in extending the Gerchberg-Papoulis extrapolation
algorithm to missing sample interpolation.

The harmonic adjustment modification of the SPEC-PEAKS algorithm does im-
prove reconstruction in many cases. However, it would be desirable to determine when
this is not true so that harmonic localization errors would not be compounded by
unwanted adjustments.

Rader [1] has suggested that his algorithm may be useful in simultaneously recon-
structing several signals z,,(t) with equal periods, each sampled at the same rate. The -
aliased sequences z;(n] could be treated as a vector Zin|. The corresponding variations
Vi(r,) would be combined into a vector V(r,) to be minimized when its length is short-
est. The variation components could be weighted by the importance of the respective S
z,(n|. An analogous approach could be used with the SPEC-PEAKS algorithm in which e
a partial energy vector & (¢y) would be maximized.

Rader [5| has also suggested that the vector waveform approach could be applied |

to the FAST-SCAN algorithm to decrease the probability of algorithm failure. All

3This corresponds to the incomplete time series, which in our case is the reconstructed period.
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available samples would be used on each successively finer search. On earlier. coarse

searches. the entire input sequence would be divided into several short sequences of

length Vg, with the Vi for each iteration being determined as before. i.e., as a function &
of monotonically increasing Farey fraction order (Section 3.3). The same series of
reduced search densities would be used as before, but more data would be utilized. ;:
thus reducing algorithm sensitivity to noise, waveform type, etc. .

Also worthy of further consideration are cases in which several signals with unequal =
periods are superimposed. such as those in Figure 5.6. We might wish to separate
and reconstruct them from a single aliased sequence. In such cases, none of the signal -
periods T, ; could be integrally related to the sampling period T, or to each other.
Otherwise, irreversible aliasing could occur. The Rader algorithm might be useful
for determining the T, from the minima of the variation function. However, signal :{,
separation and reconstruction would be arduous (if not impossible) tasks.

Since the SPEC-PEAKS algorithm automatically eliminates all unwanted portions
of the aliased spectrum, it might be more suitable for this purpose. It probably would be
necessary to determine the fundamental frequency of the strongest® signal, reconstruct A
and subtract it from the aliased signal, then repeat the process. However, amplitude
normalization and output sample spacing may make this approach cumbersome. These
two problems also must be circumvented to permit measurement of the distortion (e.g., ,
mean-squared error) introduced by each algorithm presented in this thesis. This should i
be examined, as well. \

3The one yielding the greatest partial energy.
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